т.к. АВ||МН
угол ВАС=углу NMC, значит треугольник MNC-равнобедренный
т.к. AB||MN и N-середина BC то и точка М- середина АС.
следовательно АМ=МС
Свойство --- это характеристика известного объекта
(например, если дан ромб, то из этого следует,
что его диагонали взаимно перпендикулярны)))
а признак --- это характеристика неизвестного объекта, т.е.
необходимо определить что это за объект (по признакам)))
т.е. если сказано, что диагонали 4-угольника взаимно перпендикулярны,
то из этого не следует, что это ромб (это НЕ признак)))
если стороны 4-угольника равны, то точно ничего утверждать нельзя
--- может быть это ромб, а может быть это квадрат --- это НЕ признак))
а вот если известно, что это квадрат,
то точно у него стороны равны (это свойство)))
если известно, что это ромб,
то точно у него стороны равны (это свойство)))
если диагонали 4-угольника точкой пересечения делятся пополам,
то это точно параллелограмм (это ПРИЗНАК)))
это может быть и прямоугольник, это может быть и ромб
(они же все являются параллелограммами)))
дан треугольник (какой-то, не известно какой),
но про него известно, что две стороны у него равны (это ПРИЗНАК)
---вывод: это точно равнобедренный треугольник
дан равнобедренный треугольник (известно какой)
---вывод: у него две стороны точно равны (это СВОЙСТВО)
Объяснение:Имеется четыре вершины A, B, C и D, значит фигура на рисунке представляет собой четырёхугольник. Известно, что два угла четырёх угольника ∠BAD=∠BCD=90°, по обозначению углов уже понятно, что это противоположные углы и, значит, наша фигура прямоугольник. Но даны ещё два угла, которые дополняют друг друга ∠ADB=15° и ∠BDC=75°. Сумма этих углов равна 90°. То есть имеем четырёхугольник у которого известно, что три угла равны 90°, значит это прямоугольник, а у прямоугольника все стороны параллельны, т.е. AD║BC.
ΔАВС , АВ=ВС , АС - основание ⇒ ∠А=∠С , М∈АС , N∈BC , BN=NM , AB || MN .
Док-ть: АМ=МС.
Так как АВ || MN , то ∠ВАС=∠NMC , ∠ABC=∠MNC как соответственные углы .
Но ∠А=∠С и ∠NMC=∠BAC ⇒ ∠A=∠NMC=∠C ⇒ ΔNMC - равнобедренный (углы при основании МС равны).
Значит, NM=NC , но BN=NM ⇒ BN=NC , то есть точка N - середина отрезка ВС.
Так как MN || АВ и N - середина ВС, то MN - средняя линия треугольника АВС.
Значит, точка М тоже середина отрезка, но уже середина отрезка АС ⇒ АМ=МС .