доброй ночи! я понимаю, в чём возникла трудность. но хочу вас заверить — это легко. надеюсь, вы сами это вскоре поймёте.смотрите, чтоб понять, как это делать, нам нужно вспомнить такое понятие как вектор. вектор — направленный отрезок. по условию нам даны координаты вершин треугольника авс. чтоб найти то, что от нас требуется, то первым делом, нам следует найти координаты вектора. в нашем случае — это координаты вектора ab. давайте попробуем найти координаты нужного вектора. но для этого вспомним формулу что и как делать.чтоб найти координаты вектора, надо от точки конца отнять точки начала. вот, когда мы всё это прояснили, то можем приступить к вычислению:
В основании пирамиды SABCD лежит параллелограмм ABCD с центром O. Точка M лежит на отрезке SO, причём OM:MS =1:3.
а) Постройте сечение пирамиды плоскостью, проходящей через
прямую AM параллельно прямой BD.
б) В каком отношении плоскость сечения делит ребро SC?
Объяснение:
а)Проведем через М прямую В₁D₁║ВD .
«Если заданная прямая a, не лежащая в плоскости α, параллельна прямой b, которая принадлежит плоскости α, тогда прямая a параллельна плоскости α.»
Получим точки В₁ и D₁. В плоскости ( АСS) продолжим прямую АМ до пересечения с SC. Соединим В₁-Р и D₁-Р .Полученное сечение искомое.
б)В равнобедренном ΔАСS( т.к пирамида правильная) , высота SO-является медианой. По т. Менелая
СР/РS*(SM/OM)*(AO/AC)=1,
СР/РS*(3/1)*(AO/2AO)=1,
СР/РS*(3/1)*(1/2)=1,
СР/РS=2/3
Одна сторона х см, вторая сторона 3х см, периметр
Р= х + 3х + х + 3х
По условию периметр равен 128 см.
Составляем уранвение
х+ 3х + х + 3х = 128,
8х = 128,
х=16
Одна сторона 16см, другая сторона 3·16= 48 cм