АР=ТД= (АД-ВС)/2=3 м Опустим высоту ВР. В ΔАВР ∠АВР=90-60=30°, тогда АВ=2АР=6м (катет в прямоугольном Δ против угла в 30° равен половине гипотенузы) Дальше решим через теорему косинусов: ВР=√(АВ²+АР²-2*АВ*АР*cos60)=√(36+9-2*6*3*1/2)=√27=3√3м. ответ: высота насыпи=3√3м. Вторая задача: если угол при вершине равен 20 градусов, то углы в основании треугольника равны (180-20)/2=80 градусов. Корень из 3 на 2 это синус 60 градусов, 80 градусов больше 60, значит синус угла при основании этого треугольника больше √3/2
Пусть M1, M2, M3 – образы точки M при последовательных отражениях. Три из четырёх проделанных преобразований (симметрии относительно прямой AB, прямой AC и точки A) не меняют расстояния до точки A. Поскольку точка M осталась на месте, то и симметрия относительно BC не изменила расстояния до точки A. Значит одна из точек Mi лежит на прямой BC. Последовательные отражения относительно AC и AB есть поворот на 2 ∠ BAC, а отражение относительно точки A – поворот на 180 . Значит, композиция всех этих преобразований является поворотом точки M на 2 ∠ BAC + 180 . Так как M осталось неподвижна, то 2 α + 180 делится на 2 π . Значит, ∠ BAC = 90 .
Наверное как-то так
смотри на фото