Восновании прямой призмы авса1в1с1 лежит треугольник авс, у которого угол с=90 град, угол в=30 град, ав=4см. найдите объем призмы, если угол вав1=45град.
S=1/2*AB^2*(sin(β)sin(γ)/sin(α)), где β и γ прилежащие углы, а α -противолежащий. Так вычисляем площадь треугольника АВС. Так же вычисляем площадь треугольника ВАВ1 (нам известно, то один угол прямой, второй - 45 градусов). При этом нам известно, что площадь прямоугольного треугольника равна половине произведения катетов, значит, зная площадь треугольника ВАВ1 и длину одного из катетов можно вычислить длину второго, который по совместительству является высотой призмы. Далее площадь треугольника АВС умножаем на высоту призмы и получаем ее объем. Можно и проще. зная, что угол ВАВ1 45 градусов, мы понимаем, что треугольник этот равносторониий, а значит высота тоже равна 4 см. таким образом, площадь треугольника АВС = 3,464, объем13,856, соответственно
1. Задача 1. решена пользователем ХироХамаки Новичок (решение в файле)
2. Условие задачи 2. неточное. Должно быть: Основание АС равнобедренного треугольника лежит в плоскости α. Найдите расстояние от точки В до плоскости α, если АВ = 5, АС = 6, а двугранный угол между плоскостью треугольника и плоскостью α равен 60 градусам.
Проведем ВН⊥АС и ВО⊥α. ВО - искомое расстояние. ОН - проекция ВН на плоскость α, значит ОН⊥АС по теореме, обратной теореме о трех перпендикулярах. ∠ВНО = 60° - линейный угол двугранного угла между плоскостью α и плоскостью треугольника. АН = НС = 6/2 = 3 (ВН - высота и медиана равнобедренного треугольника) ΔАВН: по теореме Пифагора ВН = √(АВ² - АН²) = √(25 - 9) = √16 = 4 ΔВНО: ВО = ВН · sin 60° = 4 · √3/2 = 2√3
3. АО⊥α, ОВ и ОС - проекции наклонных АВ и АС на плоскость α, тогда ∠АВО = ∠АСО = 60°. ΔАВО = ΔАСО по катету и противолежащему острому углу (АО - общий катет и ∠АВО = ∠АСО = 60°), значит АВ = АС = 6.
S=1/2*AB^2*(sin(β)sin(γ)/sin(α)), где β и γ прилежащие углы, а α -противолежащий. Так вычисляем площадь треугольника АВС. Так же вычисляем площадь треугольника ВАВ1 (нам известно, то один угол прямой, второй - 45 градусов). При этом нам известно, что площадь прямоугольного треугольника равна половине произведения катетов, значит, зная площадь треугольника ВАВ1 и длину одного из катетов можно вычислить длину второго, который по совместительству является высотой призмы. Далее площадь треугольника АВС умножаем на высоту призмы и получаем ее объем.
Можно и проще. зная, что угол ВАВ1 45 градусов, мы понимаем, что треугольник этот равносторониий, а значит высота тоже равна 4 см.
таким образом, площадь треугольника АВС = 3,464, объем13,856, соответственно