ответ: а) 6/√5 (ед. длины). б) 108/√5=21,6√5 (ед. площади)
Объяснение: Центр окружности, вписанной в треугольник, лежит на биссектрисе его угла.⇒ АН - биссектриса угла ВАD, О - центр окружности. ОК и ОЕ - радиусы, проведенные к точкам касания. По свойству отрезков касательных, проведенных к окружности из одной точки. АК=АЕ; DE=DH; FK=FH
Примем АК=АЕ равным х. Тогда ЕD=DH=9-х.
а) Рассмотрим рисунок приложения. Угол AFD=∠CDF (накрестлежащие при FA||CD и секущей FD) Но ∠CDF=∠ADF (DF- биссектриса ) ⇒ ∠АFD=∠FDA. ⇒ ∆ FAD – равнобедренный и AF=AD=9.
АН - биссектриса угла равнобедренного треугольника, ⇒ АН – его высота и медиана ( свойство). ⇒ FН=НD=9-х
Аналогично в ∆ КАЕ биссектриса АМ равнобедренного ∆ АКЕ - медиана и высота. ⇒ КМ=МК=4:2=2.
Прямоугольные ⊿ МАЕ и ⊿ НAD подобны по общему острому углу при А. Из подобия следует отношение DH:ЕМ=DA:ЕА.
т.е. (9-х):2=9:х., откуда получаем х²-9х+18=0. По т.Виета х₁+х₂=-(-9)=9; х₁•х₂=18 ⇒ х₁=3; х₂=6
По условию АЕ< AD, поэтому АЕ=3, ED=6
Из ⊿ АНD по т.Пифагора АН=√(AD*-DH*)=√(81-36)=3√5
⊿ АОЕ и ⊿ АDH подобны по общему углу при вершине А, из чего следует ОЕ:DH=AE:AH ⇒ r=AE•DH:AH =3•6:3√5.=6/√5.
б) При условии, что окружность касается стороны BC параллелограмма, диаметр РЕ окружности, вписанной в угол ВАD, будет высотой параллелограмма. S=h•a=2r•AD=(12/√5)•9=108/√5. = 21,6√5 (ед. площади)
сложно будет без рисунка, но ладно
строим прямоугольную трапецию ABCD, А и D - прямые углы, из угла D проводим луч, который пересекает CB в середине, точку пересчения назовём N, проводим среднюю линию трапеции, она пересекает CB в точке N(N-середина CB), а AD в точке M (M-середина AD)
так как средняя линяя равна полусумме оснований, MN=1/2 AB+DC
так как луч выходит из D под углом 45*, угол MND тоже равен 45*, следовательно и MDN = 45*, треугольник MDN - прямоугольный и равнобедренный, значит MD=MN,
AD=AM+MD, а так как AM=MD=MN, AD=2MN, а MN = 1/2 AB+DC, следовательно, AD=2x1/2 AB+DC= AB+DC
Если у равнобедренного треугольника угол при вершине, противолежащий основанию, равен 60°, то этот треугольник равносторонний.
Значит, диагональ равен: 8 + 8 = 16 см.
ОТВЕТ: 16