Если диагонали четырёхоугольника перпендикулярны, то этот четырёхугольник - ромб, а значит, все его стороны равны, т.е. АВ=ВС=СD=АD=а.
Если этот ромб вписали в окружность, то он-правильный. А правильный ромб-это квадрат.
Значит, АВСD-квадрат.
Точка О является центром окружности.
Также она является серединой пересечения диагоналей.
По теореме Пифагора находим, что ОВ= а*корень из 2 и всё поделить на 2
Пусть ОН-расстояние от точки О до стороны АВ. ВН=половине АВ= а\2
Находим ОН. Также по теореме Пифагора.
ОН= а\2
В равнобедренном треугольнике биссектриса, проведенная из угла, который образуют две равные стороны, является и медианой и высотой. Значит биссектриса проведена к основанию под прямым углом и делит отснование пополам.
По теореме пифагора ищем сторону боковую (Обозначим как АВ)
АВ^2=3^2+4^2=9+16=25
AB=5см