объяснение: смотри вложение.
чтобы найти сечение, нужно найти точки, принадлежащие плоскости сечения и плоскостям, содержащим грани фигуры. затем соединить эти точки. сечение готово.
1. точки m и n принадлежат и сечению и грани afd, проводим прямую mn до пересечения с продолжением ребра da. точка р принадлежит и плоскости сечения, и грани авсd. поэтому можем провести прямую рк до пересечения с продолжением ребра dc. точка т принадлежит и плоскости сечения, и грани dcf, плэтому можем соединить точки м и т и получить точку g, принадлежащую и плоскости сечения, и грани dfc. мы так же получили и точку е на ребре ав.
соединяем точки m,n,е,k,g и м.
фигура mnekg - искомое сечение.
2. 1. проводим прямую mn, получаем точки р и q на пересечении с аа1 и ad.
2.проводим прямую рк и получаем точки g и t.
3. проводим прямую тq и получаем точки e и f.
4. соединяем точки m,n,e,f,k,g и m и получаем искомое сечение mnefkg.
Поскольку сечение осевое, сторона квадрата здесь является диаметром и высотой цилиндра.
R основания цилиндра равен половине стороны квадрата.
R=3 см
Площадь полной поверхности цилиндра равна сумме площадей 2-х оснований и площади боковой поверхности.
Площадь боковой поверхности цилиндра = площади прямоугольника, одна из сторон которого равна высоте цилиндра, а другая - длине окружности основания.
Высота цилиндра h известна, она равна 6 см
L= 2πR=6 π см
S боковой поверхности равна 6*6 π=36 π см²
S каждого основания равна πR²= 9π см²
Площадь полной поверхности цилиндра
S полная =2*9π +36 π =54 π см²
Основание = 7*2 = 14м
Стороны = 5+6 = 11м (Если стороны одиннаковые перемножить их на 2 и потом сложить.)
P= 14+11 = 25м