1)Плоскость параллельна АВ, значит отрезок КМ принадлежащий и плоскости а и плоскости АВС - параллелен АВ. Значит тр-ки АВС и КМС подобны. Из подобия имеем: АВ/КМ=АС/КС или АВ/36=18/12.. Отсюда АВ = 54см. 2) В равнобедренном тр-ке АВС высота ВD1 к основанию АС является и медианой, то есть AD1=AC/2 = 16cм. Тогда высота BD1 по Пифагору равна √(34²-16²) = 30см. В прямоугольном тр-ке ВDD1 гипотенуза DD1 = √(BD1²+BD²)= √(900+400) ≈ 36cм. Синус угла между плоскостями АВС и ADC - это Sin <DD1B = BD/DD1 = 0,56. Значит угол равен 34°
АВСД - рівнобічна трапеція, де АВ=СД=10см (бо бічні сторони у рівнобічної трапеції рівні), а ВС та АД - це основи трапеції. В трапецію можна вписати коло, якщо сума довжин основ рівна сумі довжин бокових сторін, тобто
АВ+СД= ВС +АД
10+10=ВС+АД
ВС+АД=20
Формула визначення радіуса вписаного в трапецію кола: r = h/2, де r - це радіус кола, а h - це висота трапеції h=2* r=2*4=8см Формула площі через основи та висоту: S = (ВС + АД)· h/2 Раніше ми знайшли, що ВС+АД=20см, що і підставимо у формулу: S = 20· 8/2 S =80 см²
Відповідь: площа трапеції, яка описана навколо кола = 80 см²
решение представлено на фото
Объяснение: