Восновании прямого параллелепипеда лежит ромб со стороной 10 см и углом 30, боковое ребро параллелепипеда равно стороне ромба найти площадь боковой поверхности и объём ромба
В основании прямого параллелепипеда лежит ромб со стороной 10 см и углом 30° , боковое ребро параллелепипеда равно стороне ромба. Найти площадь боковой поверхности и объём параллелепипеда.
S бок. = Р осн. • h = ( 10 + 10 + 10 + 10 ) • 10 = 40 • 10 = 400 cм^2
V пар. = S осн. • h = 10 • 10 • sin30° • 10 = 10 • 10 • ( 1/2 ) • 10 = 500 см^3
Углы ВСО и DAO - накрест лежащие углы при пересечении двух прямых ВС и AD секущей АС. По условию они равны, значит, ВС II AD. Треугольники ВОС и DOA равны по стороне и двум прилежащим к ней углам (второй признак равенства треуг-ов): - <BCO=<DAO по условию; - <BOC=<DOA как вертикальные углы; - АО=СО по условию. У равных треугольников равны и соответственные стороны ВО и DO. Рассмотрим треуг-ки ВОА и DOC. Они равны по двум сторонам и углу между ними (первый признак равенства треуг-ов): - ВО=DO как только что доказано; - АО=СО по условию; - углы ВОА и DОС равны как вертикальные.
Углы ВСО и DAO - накрест лежащие углы при пересечении двух прямых ВС и AD секущей АС. По условию они равны, значит, ВС II AD. Треугольники ВОС и DOA равны по стороне и двум прилежащим к ней углам (второй признак равенства треуг-ов): - <BCO=<DAO по условию; - <BOC=<DOA как вертикальные углы; - АО=СО по условию. У равных треугольников равны и соответственные стороны ВО и DO. Рассмотрим треуг-ки ВОА и DOC. Они равны по двум сторонам и углу между ними (первый признак равенства треуг-ов): - ВО=DO как только что доказано; - АО=СО по условию; - углы ВОА и DОС равны как вертикальные.
S бок. = Р осн. • h = ( 10 + 10 + 10 + 10 ) • 10 = 40 • 10 = 400 cм^2
V пар. = S осн. • h = 10 • 10 • sin30° • 10 = 10 • 10 • ( 1/2 ) • 10 = 500 см^3
ОТВЕТ: S бок. = 400 см^2 ; V пар. = 500 см^3.