Решить , я никак не могу её до конца довести, у меня получаются корни сплошь и рядом, я не знаю, как из-за них решить в трапеции mnkp угол p=30 градусов, боковые стороны равны 8 и 10 см, а меньшее основание 5 см. найти среднюю линию трапеции.
Треугольники SCD и SAB - прямоугольные и центр описанной около них окружности лежит в центре их общей гипотенузы SB. Следовательно, центр шара , описанного вокруг пирамиды SABC лежит в этой же точке и радиус его равен половине ребра SB. Ребро SB найдем по Пифагору: SB=√(L²+b²). Значит OA=OC=OB=OS=Rш=(1/2)√(L²+b²), а его объем равен Vш=(4/3)*πR³ или Vш=(4/3)*(1/8)π(L²+b²)√(L²+b²)=(1/6)*(L²+b²)√(L²+b²). (ответ). Найдем объем пирамиды. Опустим перпендикуляр SH из точки S на плоскость АВС. Основание этого перпендикуляра Н попадет на прямую НВ в плоскости АВС вне треугольника АВС. (То есть грань ASC не перпендикулярна плоскости основания). Чтобы найти точку Н, надо в плоскости АВС провести перпендикуляры к сторонам АВ и СВ в точки А и С. Их пересечение и даст нам искомую точку Н, в которую проецируется вершина S пирамиды, так как по теореме, обратной теореме о трех перпендикулярах, "прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции". Значит SH - искомая высота. В равнобедренном треугольнике АВС отрезок ВР - высота, биссектриса и медиана этого треугольника. Тогда в прямоугольном треугольнике ВАН угол <ABH=(β/2), а гипотенуза НВ=b/Cos(β/2). В прямоугольном треугольнике SHB по Пифагору катет SH=√ (SB²-HB²) или SH=√[(√(L²+b²))²-(b/Cos(β/2))²]=√[(L²+b²)-(b²/Cos²(β/2)] Объем пирамиды Vп=(1/3)*So*H. Или Vп=(1/3)*b²Sinβ/2*√[(L²+b²)-(b²/Cos²(β/2)]. Или Vп=(1/6)*b²Sinβ*√[(L²+b²)-(b²/Cos²(β/2)]. (ответ).
Проверим решение на конкретных числах. Пусть b=4, L=3, β=60. Тогда SB=√(L²+b²)=5. PB=√(16+4)=√12=2√3. AH=4√3/3, SH=√(9-48/9)=√33/3. (первый вариант). HP=2√3/3, SP=√(L²-CP²)=√5. SH=√(SP²-HP²)=√(5-12/9)= √33/3 (второй вариант). HB=HP+PB=8√3/3. SH=√(SB²-HB²)=√(25-199/9)=√33/3. (третий вариант). Из моего решения: SH=√[(L²+b²)-(b²/Cos²(β/2)]=√[(9+16)-(16*4/3]=√(11/3)=√33/3.
Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
По свойству прямоугольного треугольника, мы найдем высоту трапеции, которая будет равна половине гипотенузы = 5
по теореме пифагора находим 2 катет = 5√3
высоту в трапеции равны ⇒ во втором треугольнике нам также нужно найти 2 катет = √39
оставшаяся часть большего основания = меньшему основанию
по формуле находим ср. линию =
да, очень странный ответ, но какой есть)