ответ: S=60см²
Объяснение: высота данного треугольника делит его на 2 прямоугольных треугольника, в котором боковая сторона- это гипотенуза, а высота- это катет. По теореме Пифагора найдём 2-й катет получившегося прямоугольного треугольника:
13²-12²=√(169-144)=√25=5см
Мы нашли часть основания первоначального треугольника и, зная, что он равнобедренный, то высота, проведённая к основанию, является ещё и медианой и делит это основание пополам, поэтому часть найденного основания равна второй его части и равна 5см. Поэтому основание треугольника будет: 5×2=10см; основание=10см.
Зная, что площадь треугольника равна полупроизведению его высоты на основание, к которому проведена, найдём площадь треугольника по формуле: ½×а×h, где h-высота, "а"-сторона, к которой проведена высота:
½×10×12=60см²; S=60см²
подобие
Sтрапеции = 1/2(AD + BC)h, где h - высота трапеции.
Пусть a1 = BC (меньшее основание), a2 = AD (большее основание), h1 - высота треугольника BOC, h2 - высота треугольника AOD (обе высоты проведены на из точки О).
Тогда Sтрапеции = 1/2(a1 + a2)(h1 + h2).
Угол CAD = углу BCA(как накрест лежащие углы при параллельных прямых BC и AD и секущей AC),
Угол DBC = углу ADC(как накрест лежащие углы при параллельных прямых BC и AD и секущей BD),
значит, ΔBOC подобен ΔDOA (по двум углам).
По теореме о соотношении площадей подобных треугольников
SΔAOD/SΔBOC = k^2 (k - коэффициент подобия).
SΔAOD/SΔBOC = 8/2 = 4 => k = 2.
Значит, a2/a1 = h2/h1 = 2.
h2 = 2h1, a2 = 2a1 => Sтрапеции = 1/2 * 3a1 * 3h1 = 3a1*h1.
SΔBOC = 1/2*a1*h1 = 2 => a1*h1 = 4.
Итак, Sтрапеции = 3*4 = 12.
ВС||АD (по определению прямоугольника) {вродебы}
\_ЕАD=\_BEA (по св-ву внутренних накрест лежащих углов при ВС||АD и секущей АЕ)
т.к. \_ВАЕ=\_ЕАD (т.к. АЕ-биссектриса) => \_ВЕА=\_ВАЕ => ∆ВАЕ -равнобедр. (по признаку) => ВЕ=ВА=7см
ВА=CD=7см (по св-ву противолежащих сторон в прямоугольнике)
Рabcd=AB+BC+CD+AD=34см