М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kirillmajer2007
kirillmajer2007
19.10.2022 11:20 •  Геометрия

Докажите, что отрезок CD является хордой окружности х2 + (у - 9)2 = 169, если C (5; -3), D (-12; 4).​

👇
Ответ:
Чтобы доказать, что отрезок CD является хордой окружности, мы должны убедиться, что концы отрезка лежат на окружности и что сам отрезок не проходит через центр окружности.

Уравнение окружности дано в виде (x - a)² + (y - b)² = r², где (a, b) - координаты центра окружности, а r - радиус окружности.

У нас есть уравнение окружности x² + (y - 9)² = 169. Раскроем его и сравним с общим уравнением окружности:

(x - 0)² + (y - 9)² = 169,

где a = 0 и b = 9. Значит, координаты центра окружности равны (0, 9).

Теперь рассмотрим координаты точек C(5, -3) и D(-12, 4). Мы можем вычислить расстояние между этими точками, используя формулу для расстояния между двумя точками на координатной плоскости:

d = √((x2 - x1)² + (y2 - y1)²),

где (x1, y1) и (x2, y2) - координаты точек.

Подставим координаты точек C и D в формулу:

d = √((-12 - 5)² + (4 - (-3))²),

d = √((-17)² + 7²),

d = √(289 + 49),

d = √338.

Расстояние между точками C и D равно √338.

Теперь проверим, соответствует ли это расстояние радиусу окружности. Радиус окружности равен √169, и мы видим, что √338 > √169. Значит, расстояние между точками C и D больше радиуса окружности.

Таким образом, мы доказали, что отрезок CD не проходит через центр окружности.

Осталось проверить, лежат ли концы отрезка CD на окружности. Подставим координаты точки C в уравнение окружности:

(5)² + (-3 - 9)² = 169,

25 + (-12)² = 169,

25 + 144 = 169.

Условие удовлетворено.

Теперь подставим координаты точки D:

(-12)² + (4 - 9)² = 169,

144 + (-5)² = 169,

144 + 25 = 169.

И это условие также удовлетворено.

Таким образом, мы проверили, что обе точки C и D удовлетворяют уравнению окружности, и отрезок CD не проходит через центр окружности.

Следовательно, мы доказали, что отрезок CD является хордой окружности x² + (у - 9)² = 169.
4,6(91 оценок)
Проверить ответ в нейросети
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ