дано: δ авс
∠с = 90°
ак - биссектр.
ак = 18 см
км = 9 см
найти: ∠акв
решение.
т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км.
рассмотрим полученный δ акм, т.к. ∠амк = 90°,то ак гипотенуза, а км - катет. поскольку, исходя из условия, катет км = 9/18 = 1/2 ак, то ∠кам = 30°.
т.к. по условию ак - биссектриса, то ∠сак =∠кам = 30°
рассмотрим δакс. по условию ∠аск = 90°; а∠сак = 30°, значит, ∠акс = 180° - 90° - 30° = 60°
искомый ∠акв - смежный с ∠акс, значит, ∠акв = 180° - ∠акс = 180° - 60° = 120°
ответ: 120°
бисектрисса треугольника делит противоположную сторону треугольника в таком отношении, в котором делятся оставшиеся стороны, т.е. bp/pc=ab/ac=4/10. т.к. pp1 || ac, то угол cpp1=углу cba и угол cp1p=углу cab (соответственные углы). отсюда следует, что треугольник cpp1 подобен треугольнику cba с коэффициентом подобия 10/10+4=10/14. отсюда следует, что pp1=4*10/14=40/14. аналогично qq1=8*1/3=8/3. rr1=10*8/18=80/18. отсюда следует, что 1/qq1+1/pp1+1/rr1=14/40+3/8+18/80=28/80+30/80+18/80=76/8
подробнее - на -
Abdent Середнячок
Прямоугольник - частный случай параллелограмма, тогда , пусть биссектриса AM. Углы Bma и dam - накрест лежащие при параллельных прямых bc и ad, а значит они равны, тогда, угол dam= углу bam , т.к. Am бисскетриса.
Тогда рассмотрим треугольник abm , у него угол bam = углу bma. А это углы при осоновании, значит , треугольник abm равнобедренный и bm=ab=8см ( по условию)
Т.к. abcd- параллелограмм , то ab=cd и dc=ad. ( свойство параллелограмма.
bm+mc= bc= 8+8=16см=ad
ab=bm=8см=cd
Периметр= 16+16+8+8=48
ответ : 48см