именно в такой трапеции, как у нас, S=r*p где р- полупериметр. (это легко доказывается, но это такое свойство) можно сразу найти r=S/p=320/40=8 тогда высота равна 2*8=16 периметр будет (если все сложить) 4х+4у=80 => 1) х+у=20 а из треуг. СДЕ имеем (х+у)²=(у-х)²+16² подставляем 1) в левую часть имеем 20²=(у-х)²+16² (у-х)²=144 т.к. у>х, то просто извлекаем квадрат и получаем 2) у-х=12 из 1) и 2) находим х=4 у=16
теперь из подобия закрашенных треугольников(я их вынес в отдельный рис., находим искомое КМ. КМ/СЕ=КС/АЕ КМ/16=4/20 КМ=4*16/20=3.2
Обозначим :
Н - высота пирамиды
h - высота основания пирамиды
r -радиус окружности, вписанной в основание
а - сторона основания
Решение
а) высота пирамиды Н = L· sinβ
б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.
в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =
= 2√3 · L·cosβ
г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.
Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β
д) Площадь боковой поверхности пирамиды
Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ
e) площадь полной поверхности пирамиды:
Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =
= 3√3 · L² · cosβ · (cosβ + 1)
Подробнее - на -