У ромба противоположные углы равны, значит противоположный угол углу 120° тоже будет равен 120°. Сумма углов ромба равна 360°, можем найти чему равна сумма двух острых углов: 360°-120°-120°=120° Следовательно каждый из острых углов равен 120°:2=60° Диагональ ромба делит его на два равных равнобедренных треугольника. Следовательно если угол при вершине равнобедренного треугольника равен 60°, то треугольник равносторонний, то есть стороны треугольника равны длине диагонали и равны 10 см. Периметр ромба: P = 4*a = 4*10 = 40 см.
3) найдем СВ....используем теорему синусов...к/sin 90=СВ/sina....отсюда: (синус 90 градусов равен 1)...СВ=к*sina...далее, по следствию из т. Пифагора найдем АС: ... теперь находим АД, используя подобие треугольников.... .... значит, АД=
4) в параллелограмме высоты будут равные....найдем одну из них, используя метод площадей...т.е. S=a*h....S=a*b*sina...(a и b - стороны....синус альфа - синус углы между этими сторонами....h - высота)...прировняв два метода нахождения площади, получим, что h=2 корень из 2
1) сторону АС найдем через определение тангенса угла альфа...т.е. tga=CB/AC...AC=CB/tga=5/tga
2) используем основное тождество, чтобы найти косинус (через него найдем тангенс)...
ответ: ∠CBH = 37°.
Объяснение: Сумма острых углов в прямоугольном треугольнике составляет 90°.
⇒ ∠BCA = 90° - 37° = 53°.
Когда мы провели из прямого угла прямоугольного ΔABC высоту BH, то образовался прямоугольный ΔBHC с прямым углом BHC.
Сумма острых углов в прямоугольном треугольнике составляет 90°.
⇒ ∠CBH = 90° - 53° = 37°.