В условии опечатка: в пункте б) надо найти отношение площадей треугольника ВОС и НЕвыпуклого пятиугольника AOBCD.
а) ∠ОВС = ∠ОСВ по условию, значит ΔОВС равнобедренный с основанием ВС, ОВ = ОС.
АС = CD по условию, значит ΔACD равнобедренный с основанием AD, ∠CAD = ∠CDA.
О - середина АС, значит
ОВ = ОС = ОА.
Итак, AD = 2BC (по условию), AC = 2OC и CD = 2OB, тогда
ΔADC подобен ΔСОВ по трем пропорциональным сторонам. Значит
∠ВСО = ∠DAC, а эти углы накрест лежащие при пересечении прямых AD и ВС секущей АС, значит BC║AD.
б) Коэффициент подобия треугольников ВОС и DAC:
k = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sboc : Sdac = k² = 1/4
Т.е. Sdac = 4Sboc, тогда площадь пятиугольника AOBCD:
Saobcd = Sboc + Sdac = 5Sboc,
Sboc : Saobcd = 1 : 5
46 см - периметр треугольника MOF
Объяснение:
В параллелограмме противоположные стороны попарно равны, значит сторона SN = MF = 24 (см).
В параллелограмме диагонали точкой пересечения делятся пополам, значит отрезки SO = OF = 16 : 2 = 8 (см) и отрезки MO = ON = 28 : 2 = 14 (см).
В треугольнике MOF стороны MF = 24 см; OF = 8 см; MO = 14 см.
Находим периметр треугольника MOF по формуле Р = а + в + с:
Р = MF + OF + MO = 24 + 8 + 14 = 46 см