Площадь боковой поверхности цилиндра:
Sбок = 2πRH
По условию H = R - 2,
2πR(R - 2) = 160π
R(R - 2) = 80
R² - 2R - 80 = 0 по тоереме Виета:
R = 10 или R = - 8 (не подходит по смыслу задачи)
Н = R - 2 = 8 см
а) Осевое сечение - прямоугольник, стороны которого равны диаметру основания и высоте цилиндра:
Sос. сеч. = 2R · H = 2 · 10 · 8 = 160 см²
б) Сечение цилинра, параллельное оси, имеет форму прямоугольника, одна сторона которого равна высоте. Найдем другую сторону (АВ).
ΔАОВ равнобедренный (АО = ВО как радиусы). Проведем ОС⊥АВ, ОС = 6 см по условию. ОС является так же медианой, ⇒ АС = ВС.
ΔАОС: ∠АСО = 90°, по теореме Пифагора:
АС = √(АО² - ОС²) = √(10² - 6²) = √(100 - 36) = √64 = 8 см
АВ = 2АС = 16 см
Sсеч = AB · H = 16 · 8 = 128 см²
1)Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.
Пусть в четырехугольнике абсд стороны аб и сд параллельны и аб=сд
проведем диагональ ас, делящую данный четырехугольник на два треуг-а: абс и сда. Эти треуг-и равны по двум сторонам и углу между ними, поэтому уголСАД=уголБСА, но эти углы накрест лежащии при пересечении прямых АД и БС секущей АС, следовательно, ад//бс
Таким образом, в четырехугольнике АБСД противоположные стороны попарно параллельны, а значит АБСД-параллелограмм
2) Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник - параллелограмм.
Проведем диаг АС данного четырехугольника АБСД, делящую его на треуг-и АБС и СДА. Эти треуг-и равны по трем сторонам, поэтому угл БАС равен углу САД=> аб//сд. Так как аб=сд и аб//сд, то абсд - параллелограмм.
3) Честно не помню, поищи где нибудь:) Оцени