Впрямоугольном параллелепипеде abcda1b1c1d1 известны длины рёбер: ab = 4, bc = 3, aa1 = 2. точки p и q — середины рёбер a1b1 и cc1 соответственно. плоскость apq пересекает ребро b1c1 в точке u. докажите, что b1u : uc1 = 2 : 1 с координатного метода
Пусть основание равно 6х, тогда боковая сторона равна 5х. Высота к основанию равнобедренного треугольника является также медианой, значит делит основание на части по 3х каждая. Запишем теорему Пифагора для одного из прямоугольных треугольников: Основание равно 6х=6*2,5=15, боковые стороны равны 5x=12,5. Площадь треугольника с одной стороны равна полупроизведению высоты на основание S=1/2*15*10=75. С другой стороны площадь треугольника равна произведению длин сторон разделить на четыре радиуса описанной окружности, то есть: ответ: 7,8125
У тебя есть окружность с диаметрами АВ и СD. Докажи, что хорды АС и BD равны. Докажи, что хорды ВС и АD равны. Докажи, что углы BАD и BСD равны. Вот как решать: Для начала выяснии, что СО = ОD = ОВ = ОА, так как указанные отрезки – радиусы одной и той же окружности. Докажи указанные утверждения цепочками треугольников. Например, по первому признаку, так как ОВ = ОА как радиусы, СО = ОD аналогично, и углы как вертикальные. Из равенства треугольников следует, что АС = ВD.
Далее докажи, что аналогично по первому признаку. ОD = ОА, СО = ОВ как радиусы, а углы как вертикальные. Из равенства треугольников следует, что АD = ВC.
Далее докажи, что по третьему признаку. АD – общая сторона у треугольников, АС = ВD по доказанному утверждению в п. 1, АВ = СD как диаметры окружности. Из равенства треугольников следует, что углы равны
Пусть A - начало координат.
Ось X - AB
Ось Y - AD
Ось Z - AA1
Уравнение плоскости APQ - проходит через начало координат .
ax+by+cz=0
Подставляем координаты точек
P (2;0;2)
2a+2c=0
Q(4;3;1)
4a+3b+c=0
Пусть a= 1 , тогда с = -1 b = -1
Уравнение плоскости
x-y-z=0
Нам нужно доказать что точка
U (4;2;2) принадлежит этой плоскости .
Подставляем координаты в уравнение
4-2-2=0 - принадлежит.