Обозначим вершины трапеции АВСД. Из вершины С тупого угла трапеции опустим высоту СН на АД. АВСН - прямоугольник ( т.к. трапеция прямоугольная). ВС=АН, АВ=СН. Площадь трапеции равна произведению её высоты на полусумму оснований. S АВСД=СН*(АД+ВС):2 Пусть коэффициент отношения боковых сторон равен х. Тогда АВ=4х, СД=5х. СН=АВ=4х. Из прямоугольного треугольника СНД НД²=СД²-СН² 18=√(25х²-16х²)=3х х=НД:3=18:3=6 см АВ=4х=4*6=24 см АН=√(АС²-СН²)=10 см ВС=АН=10 см АД=10+18=28 см S АВСД=СН*(АД+ВС):2 S АВСД=24*(28+10):2=456 см²
1. Треугольник РОС равен треугольнику АОК по двум углам и стороне между ними (<POC=<AOK - вертикальные, <PCO=<OAK - внутренние накрест лежащие при параллельных прямых ВС и AD и секущей АС, а АО=ОС - диагональ АС в точке О делится пополам). Из равенства треугольников имеем: АК=РС. Итак, в четырехугольнике АРСК противоположные стороны АК и РС равны и параллельны. Но, если четырехугольник имеет пару параллельных и равных сторон, то такой четырехугольник - параллелограмм (признак). Что и требовалось доказать. 2. По Пифагору: DC=√(169-144)=5. Sckd=(1/2)*KD*DC= (1/2)*8*5=20. Заметим, что Sabp=Sckd, а Sapck=Sabcd-2*Sckd=60-2*20=20. ответ: Sapkd=20. 3. По Пифагору СК=√(64+25)=√89. Сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон: АС²+РК²=2*СК²+2АК² или 169+РК²=2*16+2*89, отсюда PK=√41.