№1: . №2:
.
№1.
Пусть , тогда
- секущая.
Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна .
, по условию.
и
- односторонние углы
№2.
Обозначим данные прямые буквами
Пусть - секущая прямых
и
Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".
и
- накрест лежащие при пересечении
и
секущей
, однако
.
и
- не параллельны.
============================================================
Свойство: "Вертикальные углы равны".
Свойство: "Сумма смежных углов равна ".
Рассмотрим углы, образовавшиеся при пересечении прямых и
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
===========================================================
Рассмотрим углы, образовавшиеся при пересечении прямых и
.
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
1) Пусть точка M лежит вне окружности. O - центр окружности, точка T - пересечение отрезка OM и окружности. Возьмем на окружности точку T1, не лежащую на OM. В треугольнике MT1O сторона OM меньше суммы двух других сторон (неравенство треугольника),
MT+OT<MT1+OT1 <=> MT<MT1 (OT=OT1, радиусы)
Таким образом, чтобы длина MT была минимальной, T должна лежать на OM. Если M вне окружности, MT=1, OT=2000, то OM=MT+OT=2001. Искомое ГМТ - окружность радиусом 2001 с центром данной окружности.
2) Аналогично доказывается, что если точка M лежит внутри окружности, то искомое ГМТ - окружность радиусом 1999 (OM=OT-MT) с центром данной окружности.