М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
leyal
leyal
11.02.2021 05:51 •  Геометрия

На плоскости изображена окружность радиуса 2000. найдите гмт m, для каждой из которых расстояние до ближайшей к m точки окружности равно 1.

👇
Ответ:
georgyudin2005
georgyudin2005
11.02.2021

1) Пусть точка M лежит вне окружности. O - центр окружности, точка T - пересечение отрезка OM и окружности. Возьмем на окружности точку T1, не лежащую на OM. В треугольнике MT1O сторона OM меньше суммы двух других сторон (неравенство треугольника),

MT+OT<MT1+OT1 <=> MT<MT1 (OT=OT1, радиусы)

Таким образом, чтобы длина MT была минимальной, T должна лежать на OM. Если M вне окружности, MT=1, OT=2000, то OM=MT+OT=2001. Искомое ГМТ - окружность радиусом 2001 с центром данной окружности.

2) Аналогично доказывается, что если точка M лежит внутри окружности, то искомое ГМТ - окружность радиусом 1999 (OM=OT-MT) с центром данной окружности.


На плоскости изображена окружность радиуса 2000. найдите гмт m, для каждой из которых расстояние до
На плоскости изображена окружность радиуса 2000. найдите гмт m, для каждой из которых расстояние до
4,6(20 оценок)
Открыть все ответы
Ответ:
sergejryazanov228
sergejryazanov228
11.02.2021
ответ:

№1: \angle 7. №2: \angle 1 = \angle 4 = 153^{\circ};\angle 2 = \angle3 = 27^{\circ}; \angle 5 = \angle 8 = 13^{\circ}; \angle 6 = \angle 7 = 167^{\circ }.

Объяснение:

№1.

Пусть a || b, тогда c - секущая.

Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна 180^{\circ}.

a || b, по условию.

\angle 4 и \angle 7 - односторонние углы \Rightarrow \angle 4 + \angle 7 = 180^{\circ}

№2.

Обозначим данные прямые буквами a, b, c.

Пусть c - секущая прямых a и b.

Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".

\angle 4 и \angle 5 - накрест лежащие при пересечении a и b секущей c, однако \angle 4 \neq \angle 5.

\Rightarrowa и b - не параллельны.

============================================================

Свойство: "Вертикальные углы равны".

Свойство: "Сумма смежных углов равна 180^{\circ}".

Рассмотрим углы, образовавшиеся при пересечении прямых b и c.

\angle 5 = \angle 8 = 13^{\circ}, по свойству вертикальных углов.

\angle 6 = 180^{\circ} - \angle 5 = 180^{\circ} - 13^{\circ} = 167^{\circ}, по свойству смежных углов.

\angle 6 = \angle 7 = 167^{\circ}, по свойству вертикальных углов.

===========================================================

Рассмотрим углы, образовавшиеся при пересечении прямых a и c.

\angle 1 = \angle 4 = 153^{\circ}, по свойству вертикальных углов.

\angle 2 = 180^{\circ} - \angle 1 = 180^{\circ} - 153^{\circ} = 27^{\circ}, по свойству смежных углов.

\angle 2 = \angle 3 = 27^{\circ}, по свойству вертикальных углов.


1.две параллельные прямые пересекаются с третьей прямой. найди углы, сумма которых с данным углом р
1.две параллельные прямые пересекаются с третьей прямой. найди углы, сумма которых с данным углом р
4,8(21 оценок)
Ответ:
Loikov1
Loikov1
11.02.2021
Что-то не так. Во-первых, опечатка - не призма, а пирамида.
Во-вторых, она должна быть 4-угольной, потому что 4 угла куба не могут лежать на трех апофемах треугольной пирамиды.
Значит, считаем, что это 4-угольная правильная пирамида.
В основании квадрат. В пирамиду вписан куб так, что 4 нижних вершины лежат на основании, а 4 верхних на апофемах (высоты боковых граней).
Я сделал рисунок. Там много линий, и чтобы разобраться, я нарисовал апофемы красным, куб синим, а высоту пирамиды жирным черным.
Нижние вершины куба лежат на средних линиях основания KM и LN.
Справа я нарисовал сечение пирамиды плоскостью SLN.
В сечении будет равнобедренный треугольник, а в него вписан прямоугольник PRR1P1, у которого высота PP1 = RR1 = x - стороне куба,
а основание PR = P1R1 = x√2 - диагонали грани куба.
Теперь решаем задачу.
Сторона основания пирамиды а, диагональ AC = BD = a√2,
OC = a√2/2, угол наклона бокового ребра α.
В треугольнике AOS катет OS=H=AO*tg α=a*√2/2*tg α.
В треугольнике LOS катет OL = a/2, по теореме Пифагора
SL^2 = OL^2 + OS^2 = a^2/4 + a^2/2*tg α = a^2/4*(1 + 2tg α)
SL = a/2*√(1 + 2tg α)
Угол наклона апофемы к плоскости основания OLS = β:
tg β = OS/OL = (a*√2/2*tg α) : (a/2) = √2*tg α
В треугольнике RR1L катет
RL = RR1/tg β = x/(√2*tg α) = x√2/(2tg α)
Но мы знаем, что PR = x√2 и NP = RL. Получаем
NL = NP + PR + RL
a = 2*x√2/(2tg α) + x√2 = x√2/tg α + x√2
x = \frac{a}{ \sqrt{2}/tg \alpha + \sqrt{2} } = \frac{a*tg \alpha }{ \sqrt{2}*(tg \alpha +1) }
4,5(90 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ