Уравнение окружности имеет вид где (a,b) - координаты центра окружности, R - длина радиуса. В данном случае, так как известны координаты центра окружности, то уравнение принимает вид или
Теперь надо найти радиус окружности. Так как эта окружность касается прямой у=4, то расстояние от центра окружности до этой прямой равно радиусу этой окружности. В даннном случае эо расстояние легко вычисляется как разность ординат прямой (она всегда равна 4) и центра окружности 4-(-1)=4+1=5. Значит R=5. Уравнение окружности принимает вид
Yt pyf. ghfdbkmyj bkb ytnS=полусумме оснований на высоту S=1/2( a+b)*h средняя линия равна полусумме оснований,= 1/2( a+b). Следовательно нужно найти высоту. Проведём из точки С высоту СН. Рассмотрим треугольник СНD- он п/у. Т. к Угол D=45, следовательно угол НСD= 45 ( свойство углов прямоугольного треугольника). Следовательно, он не только прямоугольный но и равнобедренный. CD- это гипотенуза. Обозначим один катет за х, тогда и другой тоже х( т к треугольник р/б) По теореме Пифагора х² + х²= 40². 2 х²=1600. х²=800. х=20√2. S= 42*20 √2. S= 840√2
Находим длины сторон треугольника.
Расстояние между точками.
d = √((х2 - х1 )² + (у2 - у1 )² + (z2 – z1 )²)
АВ ВС АС Р р=Р/2
9,433981132 14,4222051 13 36,85618623 18,42809312
89 208 169 квадраты.
Затем используем формулу Герона.
S = √(p(p-a)(p-b)(p-c)). Здесь полупериметр р = 18,42809312.
Подставив данные в формулу, получим:
S = √3604 ≈ 60,03332408.