Развёртка есть :) Это самое простое. на рис.2 - диагональное сечение пирамиды, через диагональ основания и вершину Диагональ основания по Пифагору d² = a² + a² d = a√2 стороны длиной а см Видно, что это прямоугольный треугольник, точно такой же, как половинка основания Его площадь через катеты S = 1/2*a*a Его площадь через гипотенузу и высоту к ней S = 1/2*d*h a*a = d*h a² = a√2*h h = a/√2 - это высота пирамиды рис 3. Боковая грань пирамиды представляет собой равносторонний треугольник - ведь все рёбра равны а Для нахождения апофемы возьмём половину этого треугольника По т. Пифагора a² = (a/2)² + f² f² = 3/4*a² f = a√3/2 --- Площадь - это основание и 4 боковушки S = a² + 4*1/2*a*f = a² + 2*a*a√3/2 = a²(1 + √3) Объём V = 1/3*a²*h = 1/3*a²*a/√2 = a³/(3√2)
1) Во-первых, треугольник в котором две биссектрисы равны является равнобедренным. Отсюда сразу напишем ответ: p=9+9+6 = 24 см; Теперь докажем утверждение 1) Возьмем угол и проведем в нем биссектрису данной длины. Пусть длина равна l. Теперь будем выбирать точки на луче (назовем его луч 1) данного угла и через конец биссектрисы проводить множество прямых. Они будут пересекаться со вторым лучом угла и будут образовывать угол с ним. Рассмотрим множество получившихся углов. Из каждой вершины угла проведем ее биссектрису до пересечения с лучом 1. Исключим из рассмотрения все биссектрисы длины которых не равны l; Итак, перед нами множество биссектрис с длинами l; Докажем, что любые две могут образовать треугольник. Рассмотрим две крайние биссектрисы. Расстояние между ними , где x - расстояние AB (см. рис.); Это первая сторона треугольника. Две другие равны l; Очевидно, что ; Поэтому с любые две биссектрисы образуют треугольник. С другой стороны, в равнобедренном тупоугольном треугольнике не могут быть равны основание и сторона. Значит множество рассматриваемых биссектрис может содержать лишь одну биссектрису длины l; Другими словами, существует лишь один треугольник с двумя равными биссектрисами данной длины и с данным единственным углом. Но для таких параметров легко подобрать равнобедренный треугольник, в котором очевидно равны биссектрисы, выходящие из равных углов. Значит найденный нами единственный треугольник - равнобедренный, что и доказывает утверждение (1); Доказать можно было проще: формула биссектрисы - ; Другой биссектрисы: ; Поскольку l=l', то
∠ЕОВ=∠АОВ-∠АОЕ=57-27=30°
Объяснение: