Площадь S1 боковой поверхности призмы равна произведению периметра перпендикулярного сечения призмы на её боковое ребро. Плоскость перпендикулярного сечения пересекает боковые грани по их высотам. Поэтому периметр перпендикулярного сечения равен сумме этих высот, т. е. 3*2=6.
Значит, S1 = 3al = 18
ПустьS -- площадь основания призмы. Площадь ортогональной проекции основания призмы на плоскость, перпендикулярную боковым рёбрам, равна площади перпендикулярного сечения, делённой на косинус угла между плоскостями основания и перпендикулярного сечения. Этот угол равен углу между боковым ребром и высотой призмы, т. е. 60∘.
Поэтому
S2= 2√3Следовательно, площадь полной поверхности призмы равна
Известно, что сумма всех углов параллелограмма 360 градусов, а сумма углов, прилежащих к одной стороне – 180 градусов, значит разность в 40 градусов может быть именно у углов, прилежащих к одной стороне. Вот их сначала и вычисляем. Х – 1-й угол (180 – х) – 2-й угол Так как разность этих углов 40 градусов, то составляем уравнение: х – (180 – х) = 40 х – 180 + х = 40 2х = 220 х = 110 (это первый угол) 180 – 110 = 70 (это 2-й угол) Так как известно, что противоположные углы параллелограмма равны, то углы данного параллелограмма 110 градусов, 110 градусов, 70 градусов, 70 градусов.
введемо х , менший кут х, більший 3х , сума 180