9кл ! составьте уравнение прямой, проходящей через точку с (-4 9) параллельно: 1) оси абсцисс; 2) оси ординат складіть рівняння прямої,яка проходить через точку с(-4; 9) паралельно: 1)осі абсцис; 2)осі ординат
1) Уравнение прямой, проходящей через точку С(-4; 9) параллельно оси абсцисс. Каждая точка такой прямой имеет постоянную координату у = у(С) = 9. Поэтому уравнение такой прямой у = 9.
Уравнение прямой, проходящей через точку С(-4; 9) параллельно оси ординат. Каждая точка такой прямой имеет постоянную координату х = х(С) = -4. Поэтому уравнение такой прямой х = -4.
дуг = 1:3. Тогда составляем уравнение 60 градусов = (1х+3х)/2 где 1 и 3 - заданные условием задачи части; х - градусная мера 1 части. Отсюда х= 60*2/4 = 30 градусов - это градусная мера меньшей дуги АС 30 градусов *3 = 90 градусов - это градусная мера большей дуги ДВ Проверяем правильность решения: На дугу в 30 градусов опирается вписанный угол В, который равен = 1/2 дуги АС равной 30 => угол В = 15 На дугу в 90 градусов опирается угол В = 1/2 дуги ДВ равную 90 => угол Д = 45 Следовательно сумма углов треугольника АОВ = 45+15+120 =180, где О центр пересечения хорд Задача решена ответ: градусная мера дуг, заключенных между сторонами угла 60 градусов равна 30 и 90 градусам.
Так как искомая окружность должна касаться хорды АВ данной нам окружности радиуса R=15 и самой этой окружности, ясно, что искомая окружность расположена внутри кругового сегмента, стягиваемого хордой АВ. Поскольку хорда АВ делит круг на два круговых сегмента, существует и два варианта решения. На рисунке представлены оба варианта расположения искомой окружности. Точка касания "С" этой окружности с хордой АВ определена. Проведем радиус r=O1C искомой окружности в точку касания. Этот радиус О1С перпендикулярен хорде АВ. Проведем радиус R=ОР данной нам окружности к хорде АВ . Он также перпендикулярен хорде АВ и, кроме того, делит ее пополам в точке М. Тогда АМ=0,5АВ=12, АС=АВ/3=8. СМ=12-8=4. Опустим из центра искомой окружности перпендикуляр на диаметр КР, включающий в себя радиус R. О1М1=СМ=4. Из прямоугольного треугольника ОАМ по Пифагору найдем отрезок ОМ. ОМ=√(АО²-АМ²)=√(15²-12²)=9. В прямоугольнике М1О1СМ сторона ММ1=r, где r - радиус искомой окружности. Тогда для первого варианта (окружность расположена в большем секторе): ОМ1=ММ1-ОМ = r-9. ОО1=R-r. (Так как оба радиуса лежат на одной прямой - радиуса в точку касания Т обеих окружностей). И из прямоугольного треугольника М1О1О по Пифагору имеем: ОО1²=О1М1²+М1О² или (15-r)²=4²+(r-9)² или 225-30r+r²=16+r²-18r+81. Отсюда r=32/3. Для второго варианта (окружность расположена в меньшем секторе): ОМ1=ММ1+ОМ = r+9. И ОО1²=(15-r)²=4²+(r+9)² или 225-30r+r²=16+r²+18r+81. Отсюда r=8/3.
1) Уравнение прямой, проходящей через точку С(-4; 9) параллельно оси абсцисс. Каждая точка такой прямой имеет постоянную координату у = у(С) = 9. Поэтому уравнение такой прямой у = 9.
Уравнение прямой, проходящей через точку С(-4; 9) параллельно оси ординат. Каждая точка такой прямой имеет постоянную координату х = х(С) = -4. Поэтому уравнение такой прямой х = -4.