Проведем высоту из вершины B (новая вершина Е). Получим прямоугольный треугольник. Отрезок AE = BC, так как ad : bc = 3:1. Вычислим AE по формуле AE = AB * cos ∠BAD = 8*√3/2 = 4*√3
Из этого следует BC = 4*√3, AD=12*√3 Зная все стороны находим площадь. S = (BC+AD)/2 * √AB² - (AD-BC)²/4 = 8*√3 * √64-192/4 = 32*√3 ответ: 32*√3
Второй вариант. Найдем высоту h трапеции, зная длину отрезка AE. h² + (4*√3)² = 8² h = 4 Вычисляем площадь по формуле через высоту S = (4*√3+12√3)/2*h = 32*√3 ответ: 32*√3 ответ одинаковый в двух вариантах.
В равнобедренном треугольнике ABC к основанию AC проведена биссектриса BK. Периметр треугольника ABK равен 12 см, а периметр треугольника ABC равен 20 см.
Пусть стороны АВС равны а,в и с. Биссектриса угла при вершине равнобедренного треугольника является также и медианой и высотой h. Составим систему уравнений на основе данных задания. Р(АВК) = с + h +(b/2) = 12. P(ABC) = 2c + 2(b/2) = 20. Разделим на 2: c + (b/2) = 10. Из первого уравнения имеем h = 12 - (c + (b/2)) = 12 - 10 = 2 см.
угол BOC = 90°
угол OBC=BOC-BCA=90-40=50
ответ: угол BCA=40; угол BOC=90°; угол OBC=50