М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mandarinochkin
mandarinochkin
05.08.2020 15:20 •  Геометрия

Найти точку пересечения трех плоскостей, которые заданы уравнениями: x + y + z = 1 x - 2y = 0 2x + y + 3z + 1 = 0

👇
Ответ:
JasoonVORheeZ
JasoonVORheeZ
05.08.2020

Надо решить систему из трёх уравнений.

x + y + z - 1  = 0

x - 2y = 0

2x + y + 3z + 1 = 0.

Применим подстановки. Из второго уравнения х = 2у.

Из первого z = 1 - x - y  = 1 - 2у - у = 1 - 3у.

Подставляем  в третье уравнение.

4у + y + 3(1 - 3у) + 1 = 0.

5у + 3 - 9у + 1 = 0,

4у = 4,     у = 4/4 = 1,     х = 2у = 2*1 = 2,  2; 1; -2).z = 1 - 3y =  1 - 3*1 = -2.

ответ: точка (2; 1; -2).  

4,7(90 оценок)
Открыть все ответы
Ответ:
педро228
педро228
05.08.2020
Пишу в ответ, потому что пятая задача полезная, хоть и простая, может, еще кому пригодится.
1) Произведение стороны на высоту к ней равно удвоенной площади, поэтому вторая высота 2.
2) Пусть M лежит на ВС, N на AC, K на AB. О - центр окружности. Пусть угол KMP = α; тогда угол KOP = 2*α; углы OKA и ONA - прямые, поэтому угол BAC = 180° - 2*α; также вычисляются и другие углы. 88°; 48°; 44°;
3) Центр вписанной окружности делит биссектрису в пропорции (a+b)/c; или (P-c)/c; где с - та сторона, к которой проведена биссектриса.
[Это очень просто доказать - надо два раза применить известное свойство биссектрисы, сначала к стороне с - она делится биссектрисой на отрезки ca/(a+b) и cb/(a+b); так как центр окружности лежит на всех трех биссектрисах, то сама биссектриса к стороне с делится биссектрисой к стороне b на отрезки в отношении a/(ca/(a+b)) = (a+b)/c;]
То есть 34/13 = (P - 39)/39; P = 141;
4) Тр-ки ABC и AHB подобны;AH/AB = AB/AC; AB^2 = 5*45; AB = 15;
5) Если продлить AB и DC до пересечения в точке E, то тр-к ADE прямоугольный. Так как ВCE подобен ADE, то BE/AE = 9/45 = 1/5; и AE - BE = 24; откуда BE = 6; AE = 30;
Пусть O - центр окружности, N точка касания её c CD, M - середина AB. О конечно же лежит на перпендикуляре к АВ в его середине, поэтому ОМEN ( :) ) - прямоугольник. То есть радиус окружности 6 + 24/2 = 18;
4,8(33 оценок)
Ответ:
botvinaanna80
botvinaanna80
05.08.2020
Пишу в ответ, потому что пятая задача полезная, хоть и простая, может, еще кому пригодится.
1) Произведение стороны на высоту к ней равно удвоенной площади, поэтому вторая высота 2.
2) Пусть M лежит на ВС, N на AC, K на AB. О - центр окружности. Пусть угол KMP = α; тогда угол KOP = 2*α; углы OKA и ONA - прямые, поэтому угол BAC = 180° - 2*α; также вычисляются и другие углы. 88°; 48°; 44°;
3) Центр вписанной окружности делит биссектрису в пропорции (a+b)/c; или (P-c)/c; где с - та сторона, к которой проведена биссектриса.
[Это очень просто доказать - надо два раза применить известное свойство биссектрисы, сначала к стороне с - она делится биссектрисой на отрезки ca/(a+b) и cb/(a+b); так как центр окружности лежит на всех трех биссектрисах, то сама биссектриса к стороне с делится биссектрисой к стороне b на отрезки в отношении a/(ca/(a+b)) = (a+b)/c;]
То есть 34/13 = (P - 39)/39; P = 141;
4) Тр-ки ABC и AHB подобны;AH/AB = AB/AC; AB^2 = 5*45; AB = 15;
5) Если продлить AB и DC до пересечения в точке E, то тр-к ADE прямоугольный. Так как ВCE подобен ADE, то BE/AE = 9/45 = 1/5; и AE - BE = 24; откуда BE = 6; AE = 30;
Пусть O - центр окружности, N точка касания её c CD, M - середина AB. О конечно же лежит на перпендикуляре к АВ в его середине, поэтому ОМEN ( :) ) - прямоугольник. То есть радиус окружности 6 + 24/2 = 18;
4,5(13 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ