Пишу в ответ, потому что пятая задача полезная, хоть и простая, может, еще кому пригодится. 1) Произведение стороны на высоту к ней равно удвоенной площади, поэтому вторая высота 2. 2) Пусть M лежит на ВС, N на AC, K на AB. О - центр окружности. Пусть угол KMP = α; тогда угол KOP = 2*α; углы OKA и ONA - прямые, поэтому угол BAC = 180° - 2*α; также вычисляются и другие углы. 88°; 48°; 44°; 3) Центр вписанной окружности делит биссектрису в пропорции (a+b)/c; или (P-c)/c; где с - та сторона, к которой проведена биссектриса. [Это очень просто доказать - надо два раза применить известное свойство биссектрисы, сначала к стороне с - она делится биссектрисой на отрезки ca/(a+b) и cb/(a+b); так как центр окружности лежит на всех трех биссектрисах, то сама биссектриса к стороне с делится биссектрисой к стороне b на отрезки в отношении a/(ca/(a+b)) = (a+b)/c;] То есть 34/13 = (P - 39)/39; P = 141; 4) Тр-ки ABC и AHB подобны;AH/AB = AB/AC; AB^2 = 5*45; AB = 15; 5) Если продлить AB и DC до пересечения в точке E, то тр-к ADE прямоугольный. Так как ВCE подобен ADE, то BE/AE = 9/45 = 1/5; и AE - BE = 24; откуда BE = 6; AE = 30; Пусть O - центр окружности, N точка касания её c CD, M - середина AB. О конечно же лежит на перпендикуляре к АВ в его середине, поэтому ОМEN ( :) ) - прямоугольник. То есть радиус окружности 6 + 24/2 = 18;
Пишу в ответ, потому что пятая задача полезная, хоть и простая, может, еще кому пригодится. 1) Произведение стороны на высоту к ней равно удвоенной площади, поэтому вторая высота 2. 2) Пусть M лежит на ВС, N на AC, K на AB. О - центр окружности. Пусть угол KMP = α; тогда угол KOP = 2*α; углы OKA и ONA - прямые, поэтому угол BAC = 180° - 2*α; также вычисляются и другие углы. 88°; 48°; 44°; 3) Центр вписанной окружности делит биссектрису в пропорции (a+b)/c; или (P-c)/c; где с - та сторона, к которой проведена биссектриса. [Это очень просто доказать - надо два раза применить известное свойство биссектрисы, сначала к стороне с - она делится биссектрисой на отрезки ca/(a+b) и cb/(a+b); так как центр окружности лежит на всех трех биссектрисах, то сама биссектриса к стороне с делится биссектрисой к стороне b на отрезки в отношении a/(ca/(a+b)) = (a+b)/c;] То есть 34/13 = (P - 39)/39; P = 141; 4) Тр-ки ABC и AHB подобны;AH/AB = AB/AC; AB^2 = 5*45; AB = 15; 5) Если продлить AB и DC до пересечения в точке E, то тр-к ADE прямоугольный. Так как ВCE подобен ADE, то BE/AE = 9/45 = 1/5; и AE - BE = 24; откуда BE = 6; AE = 30; Пусть O - центр окружности, N точка касания её c CD, M - середина AB. О конечно же лежит на перпендикуляре к АВ в его середине, поэтому ОМEN ( :) ) - прямоугольник. То есть радиус окружности 6 + 24/2 = 18;
Надо решить систему из трёх уравнений.
x + y + z - 1 = 0
x - 2y = 0
2x + y + 3z + 1 = 0.
Применим подстановки. Из второго уравнения х = 2у.
Из первого z = 1 - x - y = 1 - 2у - у = 1 - 3у.
Подставляем в третье уравнение.
4у + y + 3(1 - 3у) + 1 = 0.
5у + 3 - 9у + 1 = 0,
4у = 4, у = 4/4 = 1, х = 2у = 2*1 = 2, 2; 1; -2).z = 1 - 3y = 1 - 3*1 = -2.
ответ: точка (2; 1; -2).