М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ksyushenkа
ksyushenkа
16.05.2023 14:24 •  Геометрия

Докажите, что отрезок, соединяющий середины боковых сторон трапеции параллелен основаниям.

👇
Открыть все ответы
Ответ:
bigrushnboss
bigrushnboss
16.05.2023
Если диагонали трапеции АВСД перпендикулярны друг другу и пересекаются в точке Е, то треугольники АЕД и ВЕС подобны друг другу и имеют острые углы в 45°.

АЕ = АД*cos 45° = 9√2*(1/√2) = 9.
EC = BC*cos 45° = 3√2*(1/√2) = 3.
Диагонали АС и ВД равны друг другу по свойству вписанной трапеции.
АС = ВД = 9 + 3 = 12.
Они образуют 2 треугольника, вписанных в ту же окружность, что и трапеция.
Поэтому радиус окружности, описанной около трапеции находим по формуле радиуса окружности. описанной около треугольника.
R = abc/(4S).
Боковую сторону находим по теореме косинусов:
СД = √(АС²+АД²-2*АС*АД*cos45°) = √(162+144-216) = √90 = 
=  9.486833.
Площадь треугольника АСД находим по формуле Герона:
S √(p(p-a)(p-b)(p-c).
Полупериметр р = (а+в+с)/2 =  17.107378.
Тогда S = 54. 
Детали этого треугольника:
       a              b            c           p                  2p            S
9.486833   12.727922   12   17.107378   34.21475504    54
      x=р-а         y=р-в           z=р-с       x*y*z        p*x*y*z     
  7.620545    4.379456   5.107378   170.45278     2916  
cos A = 0.707107   cos B = 0.316228    cos С = 0.447214
Аrad = 0.785398     Brad = 1.249046    Сrad = 1.107149
Аgr = 45                 Bgr = 71.565051    Сgr = 63.434949.

Теперь находим радиус:
R = (9.486833*12.727922*12)/(4*54) =  1448.972/216 =   = 6.708203932.
Это же значение можно представить как R = √45 = 3√5.

Площадь треугольника АСД можно найти проще:
S = (1/2)*АД*АС*sin 45° = (1/2)*9√2*12*(1/√2) = 54.

Радиус окружности можно определить через корни:
R = ((√90)*(9√2)*12)/4*54 = 108√180/216 = √45. 
4,4(97 оценок)
Ответ:
vikafemur
vikafemur
16.05.2023
1) Для начала построим данное сечение:
Для построения сечения требуется построить точки пересечения секущей плоскости с рёбрами и соединить их отрезками:
а) Можно соединять только две точки, лежащие в плоскости одной грани.
Точки В и С лежат в одной плоскости,
значит, соединяем эти точки и получаем отрезок ВС, но ВС уже построен в ходе построения прямой призмы.
Точки В и К лежат в одной плоскости → получаем отрезок ВК
б) Секущая плоскость пересекает параллельные грани по параллельным отрезкам.
Грани ВВ1С1С и АА1D1D параллельны
В противном случае эти грани пересекались бы, что противоречит условию: ВС || AD , B1C1 || A1D1 ( по свойству трапеции АВСD и A1B1C1D1 )
Через точку К проводим прямую, паралельную прямой ВС → получаем точку L.
Но также ВС || KL, BC || AD → AD || KL || A1D1 ( AD = KL = A1D1 = 4 см ) и АК = КА1. Значит, DL = LD1 ( AK = KA1 = DL = LD1 )
Точки C и L лежат в одной плоскости → получаем отрезок CL

Из этого следует, что четырёхугольник BCLK – данное по условию сечение.

АВСD – равнобедренная трапеция → АВ = CD
Боковые рёбра прямой призмы равны: АА1 = ВВ1 = СС1 = DD1
Значит, прямоугольники АВВ1А1 и CDD1C1 равны. Соответственно равны и отрезки ВК и CL.
Следовательно, сечение BCLK – равнобедренная трапеция ( ВС || КL, BK = CL )

2) В трапеции АВСD опустим высоту АМ на ВС. По свойству прямой призмы КА перпендикулярен плоскости АВС, в которой лежит проекция АМ наклонной КМ. Значит, по теореме о трёх перпендикулярах КМ перпендикулярен ВС.
Из этого следует, что угол АМК – линейный угол двугранного угла АВСК, то есть угол АМК = 60°.

3) Площадь трапеции BCLK равна:
S bclk = 1/2 × ( KL + BC ) × KM
48 = 1/2 × ( 4 + 8 ) × КМ
48 = 6 × КМ
КМ = 8 см

Рассмотрим ∆ АМК (угол КАМ = 90°):
cos AMK = AM/KM
AM= KM × cos AMK = 8 × cos60° = 8 × 1/2 = 4 см
По теореме Пифагора:
КМ² = АМ² + АК²
АК² = 8² – 4² = 64 – 16 = 48
АК = 4√3 см
АА1 = 2 × AK = 2 × 4√3 = 8√3 см

Обьём прямой призмы рассчитывается по формуле:
V ( призмы ) = S осн. × h

V ( призмы ) = S abcd × AA1 = 1/2 × ( AD + BC ) × AM × AA1 = 1/2 × 12 × 4 × 8√3 = 192√3 см²

ОТВЕТ: V ( призмы ) = 192√3 см²
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
Основанием прямой призмы служит равнобедренная трапеция, основания которой равны 8 и 4 см. через бол
4,7(44 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ