Задачи на второй признак равенства треугольников
Треугольники
Посмотрев данный видеоурок, все желающие смогут получить представление о теме «Задачи на второй признак равенства треугольников». В ходе этой лекции учащимся предстоит вспомнить, повторить и научиться применять все о втором признаке равенства треугольников. Учитель подробно разберет и решит несколько задач по этой теме.
Сначала вспомним, что две фигуры называются равными, если их можно совместить наложением. Однако очень трудно сравнивать фигуры по определению, поэтому мы введем признаки равенства треугольников – по некоторым элементам.
Объяснение:
тут всё очевидно же
Объяснение:
Средняя линия треугольника и её свойства. Определение: средняя линия треугольника — это отрезок, соединяющий середины двух его сторон. У средней линии есть два свойства : первое свойство: средняя линия треугольника параллельна основанию и второе свойство: средняя линия равна половине основания. Доказательство. Через середину E боковой стороны BC проведём прямую ED параллельно основанию AC. По теореме Фалеса другая боковая сторона тоже разделится пополам. Значит, D — середина стороны AB, то есть отрезок ED — это средняя линия. А по построению наш отрезок параллелен основанию, вот и доказана параллельность средней линии основанию. Теперь докажем второе свойство: через точку D проведём прямую DF, параллельную боковой стороне BC. По теореме Фалеса основание AC разделится пополам, то есть точка F — середина стороны AC, и FC равно половине основания. А многоугольник CEDF — это параллелограмм (по построению), его противоположные стороны равны, то есть отрезок DE равен половинке основания — отрезку FC. То есть средняя линия равна половине основания. ЧТД.
.......................................................