100 ! основание пирамиды - ромб из стороной а и острым углом альфа. если боковые грани пирамиды наклонены к плоскости основания под углом бета, то чему равна высота пирамиды? решение обязательно с рисунком
Диагонали ромба пересекаются под прямым углом и делят углы ромба пополам.
1) Две полудиагонали и сторона ромба образуют прямоугольный треугольник с одним из острых углов = alpha / 2; сторона ромба является гипотенузой, а одна из полудиагоналей (b) является катетом, прилежащим к этому углу -> длина этой полудиагонали = a * cos(alpha / 2)
2) Опущенная в этом треугольнике на гипотенузу (сторону ромба) высота (c) образует еще один прямоугольный треугольник с полудиагональю (b) и соответствующей частью стороны ромба; гипотенуза этого треугольника - полудиагональ (b) ромба, высота является катетом, лежащим напротив угла alpha / 2 - ее длина = длина полудиагонали * sin(alpha/2) = a * sin(alpha/2) * cos(alpha/2) = a/2 * sin(alpha)
3) Высота треугольника (c) и высота пирамиды (h) образуют прямоугольный треугольник, угол напротив высоты пирамиды = beta -> высота пирамиды (h) = высота треугольника (с) * tg( beta ) = a/2 sin(alpha) tg(beta)
Точка М не лежит в плоскости параллелограмма ABCD. Она образует с точками С,D - треугольник MCD, с основанием CD По условию прямая (C'D'), проходит через середины отрезков MC и MD. А это как раз боковые стороны треугольника MCD. Значит C'D' - средняя линия треугольника MCD , следовательно параллельна основанию CD. В параллелограмме противолежащие стороны попарно параллельны, тогда AB || CD , но CD || C'D'. Значит и AB || C'D' ДОКАЗАНО, что прямая, содержащая середины отрезков MC и MD параллельна прямой AB
1. Прямая, проходящая через середины сторон AB и CD является средней линией трапеции, она параллельна основаниям ВС и AD. По признаку параллельности прямой и плоскости, если прямая параллельна AD, то она параллельна и плоскости α. 2. Если через прямую параллельную плоскости проходит другая плоскость и пересекает первую, то линия пересечения параллельна данной прямой. ЕС || Е1С1, тогда Δ В1Е1С1 подобен ΔВЕС с коэффициентом подобия 3/8 (т к C1E1:CE=3:8). тогда ВС1:ВС=3/8, ВС1=ВС* 3/8=10,5 см. 3. Прямая, проходящая через середины AE и BE является средней линией треугольника АВЕ, она параллельна АВ, в свою очередь АВ||CD по свойству параллелограмма, тогда если две прямые параллельны третьей, то они параллельны между собой, значит прямая, проходящая через середины AE и BE, параллельна прямой CD.
Диагонали ромба пересекаются под прямым углом и делят углы ромба пополам.
1) Две полудиагонали и сторона ромба образуют прямоугольный треугольник с одним из острых углов = alpha / 2; сторона ромба является гипотенузой, а одна из полудиагоналей (b) является катетом, прилежащим к этому углу -> длина этой полудиагонали = a * cos(alpha / 2)
2) Опущенная в этом треугольнике на гипотенузу (сторону ромба) высота (c) образует еще один прямоугольный треугольник с полудиагональю (b) и соответствующей частью стороны ромба; гипотенуза этого треугольника - полудиагональ (b) ромба, высота является катетом, лежащим напротив угла alpha / 2 - ее длина = длина полудиагонали * sin(alpha/2) = a * sin(alpha/2) * cos(alpha/2) = a/2 * sin(alpha)
3) Высота треугольника (c) и высота пирамиды (h) образуют прямоугольный треугольник, угол напротив высоты пирамиды = beta -> высота пирамиды (h) = высота треугольника (с) * tg( beta ) = a/2 sin(alpha) tg(beta)