Диагональ основания параллелепипеда равна корень квадратный из .15^2+8^2=17 Диагональ параллелепипеда образует с диагональю основания угол 45 градусов . Рассмотрим треугольник, образуемый этими диагоналями и боковым ребром. Этот треугольник прямоугольный. Из него находим ребро . Оно равно диагональ основания *на тангенс 45 =17.Тогда площадь боковой поверхности равно периметр основания*боковое ребро(высота),те 15*8*17=2040 Полная поверхность равна боковая поверхность +2 площади основания., т.е.2040+2*15*8=2280
Обозначим каждую часть диагонали х Вся диагональ 3х Имеем равнобедренный треугольник у которого основание равно 2х. Боковые стороны а. высота такого треугольника равна √а²-х² Площадь треугольника, образованного диагональю и двумя сторонами прямоугольника равна 1/2 ·3х ·√а²-х²
С драгой стороны вторая сторона прямоугольника по теореме Пифагора равна√(3х)²-а² Площадь треугольника образованного диагональю и двум сторонами равна половине произведения сторон
1/2 · а ·√9х²-а²
ПРиравняем и решим уравнение 9х^4=a^4 3x²=a² x=a√3/3 диагональ равна а·√3 вторая сторона по теореме ПИфагора а√2
8 см
Объяснение:
Все решение на фото