Пусть ABC - равнобедренный
∟B = 120 °, АС = 18 см, АК - высота.
В ΔАВС проведем высоту BD к основанию АС.
По свойству равнобедренного треугольника BD - биссектриса и медиана
AD = DC = 1 / 2AC = 18: 2 = 9 (см) (BD - медиана).
∟AВD = ∟DBC = 1 / 2∟В = 120 °: 2 = 60 ° (BD - биссектриса).
Рассмотрим ΔABD - прямоугольный (∟D = 90 °, BD - высота):
∟BAD + ∟ABD = 90 °; ∟BAD = 30 °; ∟BAD = ∟BCD = 30 ° (ΔABC - равнобедренный).
Рассмотрим ΔАКС (∟К = 90 °, АК - высота):
АК - катет, лежащий напротив угла 30 °, тогда АК = 1 / 2АС; АК = 18: 2 = 9 (см).
ответ: Высота AK= 9 см
105=15+90.
1)Строим прямоуг. треуг-к АОС , с углом С 60 градусов
(строим 2 перпенд.прямых а и б, на а от О - точки пересечения прямых - откладываем ОА. От точки А окладываем на прямую а дальше это же расстояние - АД. Теперь из точки А строим окружность с радиусом ОД, что равно 2 ОА.Точку пересечения окружности и прямой б назовём С. В прямоугольном треугольнике АОС угол А =60 градусов, С=30 градусов). отрезок АС назовём с.
2)Проводим биссектрису угла С.
3)строим к ней перпендикуляр д через точку С. берём угол этого перпендикуляра, в котором внутри лежит точка О. Прибавляем к нему угол дс. 90+15(т.к. угол АСО 30 градусов, строили биссектрису) =105.
ВН- высота ,ВС=АД=14.ВН=5,5 следует
S=5,5×14=22см
ответ:22см в квадрате!