Рассмотрим треугольник АМВ. Он равнобедренный по условию (ВМ=АМ). Значит, углы при его основании АВ равны. <MBA=<MAB. Рассмотрим треугольник ВМС. Здесь <MBC=<ABC-<MBA=60-<MBA (углы равностороннего треугольника равны по 60 градусов). Рассмотрим треугольник АМС. Здесь <MAC=<BAC-<MAB=60-<MAB. Но <MBA=<MAB как показано выше, значит <MBC=<MAC. Тогда треугольники ВМС и АМС равны по двум сторонам и углу между ними: - ВС=АС, т.к. АВС - равносторонний треугольник; - ВМ=АМ по условию; - соответственные углы МВС и МАС равны как показано выше. В равных треугольниках ВМС и АМС равны соответственные углы МСВ и МСА, т.е. СМ - биссектриса угла АСВ.
При пересечении двух прямых образовалось 4 угла: 2 тупых (обозначим Т), и 2 острых (обозначим Р). Дано: сумма трёх углов равна 200°, каких неизвестно (надо найти). Также найти тупые и их сумму. Рассуждаем. (1) Мы знаем (известно), что тупые углы равны Т1=Т2=Т, как противолежащие. Точно также равны между собой острые Р1=Р2=Р (2) Известно, что Т+Р=180° - как прилежащие (3) Знаем, что тупым называется угол Т>90° 4. А теперь соображаем: можно составить две суммы из 3х углов: 1) Т+Р+Т и 2) Р+Т+Р. Но из (2) и (3) в 1 случае получается 180°+>90° > 270°! а нам дано 200°. Не подходит. Остается только 2 случай Р+Т+Р=200°, или 180°+Р=200°, и Р=20°. Всё, остальное - раз плюнуть: Т=180-20=160° 2Т=320°. Конец.
BD = √(50 - 50·√3) = 5·√(2·(1-√3)) см.
Объяснение:
Решение простое: теорема косинусов. Но с Вашим условием...
В ромбе все стороны равны, а углы, прилежащие к одной стороне, равны в сумме 180°. Значит ∠А = 180-150 = 30°.
Cos30 = √3/2. Тогда из треугольника ABD по теореме косинусов:
BD = √(AB²+AD² - 2·AB·AD·CosA) или
BD = √(50 - 50·√3) = 5·√(2·(1-√3)) см.