1. Прямая: В равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой. Обратная: Если биссектриса треугольника, проведённая к основанию, является медианой и высотой, то этот треугольник равнобедренный. 2. Прямая: Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. Обратная: Если треугольники равны, то две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника.
Средняя линия треугольника соединяет середины двух его сторон, параллельна третьей и равна её половине. Обозначим треугольник АВС. АВ=ВС. Если средняя линия соединяет середины АВ и ВС, то основание АС треугольника равно 2•5=10. Тогда сумма равных боковых сторон равна 40-10=30, и каждая из них 30:2=15 см.
Средняя линия может соединять и середины одной боковой стороны и основания. Рассмотрим такой случай для данного условия. Пусть средняя линия равна половине боковой стороны АВ. Тогда каждая боковая равна 2•5=10, их сумма 20 см, и на основание останется 40-20=20 см. Из неравенства треугольника: любая сторона меньше суммы двух других. Следовательно, для данного треугольника основание равно 10 см, боковые стороны по 15 см.
Найдем вторую сторону с теоремы Пифагора , где диагональ -гипотенуза, а стороны прямоугольника - катеты ;
8² + х² = 10² ;
64 + х² = 100 ;
х² = 100 - 64 ;
х² = 36 ;
х = √36 ;
х = 6 ;
Периметр прямоугольника : Р = 2( а +в ),где а и в стороны ;
Р = 2( 8 + 6 ) = 2 * 14 = 28 ;
ответ : 28 сантиметров.