P = 2x + y (x - боковые стороны, y - основание) y = 96, P = 196 - дано в условии, найдем x 2X=P-y x= (P-y)/2 x=50
итого: x = 50, y = 96 нам не хватает высоты, для нахождения площади. Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана) по теореме Пифагора h = √(x^2 - (y/2)^2) h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h тогда: S=1/2*hy = 96*14/2 = 672. ответ: 672
Вписываем в исходный треугольник окружность с центром О, проводим касательные перпендикулярно биссектрисам двух острых углов исходного треугольника (на рисунке ST и UV). Эти касательные отрезают два остроугольных треугольника AST и UVC (т.к равнобедренные треугольники с острым углом противолежащим основанию являются остроугольными). В центральном 5-угольнике все его внутренние углы тупые (кроме, может быть угла B). Соединяем вершины этого 5-угольника с центром О. Полученные пять треугольников остроугольные, потому что проведенные отрезки - биссектрисы углов 5-угольника, а биссектрисы делят любой угол на два острых, причем, если угол был тупой, то его половина больше 45 градусов, т.е. это означает что углы при вершине О, острые.
P.S. Можно доказать, что меньше, чем на 7 остроугольных треугольников разрезать нельзя.
y = 96, P = 196 - дано в условии, найдем x
2X=P-y
x= (P-y)/2
x=50
итого: x = 50, y = 96
нам не хватает высоты, для нахождения площади.
Проведем высоту и рассмотрим половинку этого равнобедренного треугольника, где гипотенуза - x, а прилежащий катет - y/2 (т.к высота в равнобедренном треугольника - медиана)
по теореме Пифагора
h = √(x^2 - (y/2)^2)
h = √(50^2 - 48^2) = √196 = 14
Площадь треугольника: половина основания на высоту, основание - y, высота - h
тогда: S=1/2*hy = 96*14/2 = 672.
ответ: 672