ответ: 7 см, 8 см.
Объяснение: Четырехугольник может быть вписан в окружность только тогда, когда сумма его противоположных углов равна 180°.⇒ Если угол АВС=60°, то угол АDC=120°.
Пусть АВ=8 см, ВС=15 см.
По т.косинусов из ∆ АВС диагональ АВСD АС²=AB²+BC²-2•AB•BC•cos60°
АС²=8²+15²-2•8•15•0,5⇒
AC²=169
В ∆ АDC примем АD=x, DC=х+1.
cos120°=-cos60°=(-0,5)
По т.косинусов АС²=x²+(x+1)²-2•x•(x+1)•(-o,5), откуда
169=3x²+3x+1 ⇒
3x²+3x-168=0
Решив квадратное уравнение, получим х₁=7, х₂=-8 (не подходит). ⇒
АD=x=7 см, CD=7 см+1=8 см
Объяснение:
1) Рассмотрим треугольник АВВ1 и треугольник СВВ1
АВ= СВ1(по условию)
ВВ1 - общая
угол АВВ1 = СВВ1(т.к. ВВ1 - биссектриса)
из этого всего следует, что
треугольник АВВ1= треугольнику СВВ1
из этого следует, что эти треугольники равносторонние
из этого следует, что треугольник АВС тоже равносотонний
значит углы равны по 60°