М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mukola16
mukola16
14.02.2021 22:08 •  Геометрия

На рисунке ak=kc,ae=dc,уголbda=уголfec. докажите,что bk=kf

👇
Ответ:
kislayaya13
kislayaya13
14.02.2021
Ты забыл прикрепить рисунок в этот вопрос
4,6(46 оценок)
Открыть все ответы
Ответ:
nastyusha19032002
nastyusha19032002
14.02.2021

(-2,2; -0,6)

Объяснение:

Пусть точка P(x₀, y₀) удовлетворяет системе уравнений. Возьмём квадратный корень из левой и правой части каждого уравнения:

\begin{cases}\sqrt{(x_0+4^2)+(y_0+3)^2}=3,\\\sqrt{(x_0+1)^2+(y_0-1)^2}=2.\end{cases}

Первое уравнение задаёт расстояние от точки P(x₀, y₀) до точки A(-4, -3), равное трём. Второе уравнение задаёт расстояние от точки P(x₀, y₀) до точки B(-1, 1), равное двум.

Заметим, что расстояние между точками A(-4, -3) и B(-1, 1) равно \sqrt{(-1+4)^2+(1+3)^2}=\sqrt{3^2+4^2}=5=3+2. Расстояние между данными точками равно сумме расстояний между точками P(x₀, y₀) и A(-4, -3) и между точками P(x₀, y₀) и B(-1, 1) (AB (5) = AP (3) + PB (2)). Значит, точка P(x₀, y₀) находится на отрезке между точками A(-4, -3) и B(-1, 1) и делит его в отношении 3 : 2, считая от точки A(-4, -3). Тогда справедливо \overrightarrow{AP}=\dfrac{3}{5}\overrightarrow{AB}=\left(\dfrac{3}{5}\cdot(-1+4),\dfrac{3}{5}\cdot(1+3)\right)=\left(\dfrac{9}{5},\dfrac{12}{5}\right)

Поскольку точка A находится не в начале координат, выполнив параллельный перенос на вектор \overrightarrow{OA}=(-4,-3), мы получим координаты точки P(x₀, y₀): x_0=\dfrac{9}{5}-4=-\dfrac{11}{5}; y_0=\dfrac{12}{5}-3=-\dfrac{3}{5}.

Решением системы является точка (-2,2; -0,6).

4,4(37 оценок)
Ответ:
sebasogo
sebasogo
14.02.2021
Площадь  произвольного четырёхугольника с диагоналями  ,    и острым углом    между ними (или их продолжениями), равна: площадь  произвольного выпуклого четырёхугольника равна: , где  ,    — длины диагоналей, a, b, c, d  — длины сторон.  :     где p  — полупериметр, а    есть полусумма противоположных углов четырёхугольника. (какую именно пару противоположных углов взять роли не играет, так как если полусумма одной пары противоположных углов равна  , то полусумма двух других углов будет    и  ). из этой формулы для вписанных 4-угольников следует  формула брахмагупты. особые случаи[править  |  править исходный текст] если 4-угольник и вписан, и описан, то  .если он описан, то площадь равна половине его периметра умноженная на радиус вписанной окружности   |  править исходный текст] в древности египтяне и некоторые другие народы использовали для определения площади четырёхугольника  неверную  формулу  — произведение полусумм его противоположных сторон a, b, c, d[1]: . для непрямоугольных четырехугольников эта формула даёт завышенное значение площади. можно предположить, что она использовалась только для определения площади почти прямоугольных участков земли. при неточном измерении сторон прямоугольника эта формула позволяет повысить точность результата за счет усреднения исходных измерений.
4,8(43 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ