Через вершину угла b, прямоугольного угла abc. катеты которого: cb = 3 см, ac = 4 см. проведены перепендекуляр bm плоскости треугольника. найдите расстояние от точки m до вершины a. если bm = 12 см
Пусть BE - высота, проведенная к стороне AC, а точка D - равноудалена от концов AC, значит AD=DC. Рассмотрим тр-ки ADE и CDE. Они прямоугольные и у них один из катетов общий (DE), а гипотенузы равны AD=DC. Значит эти тр-ки равны: "если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны."
Из их равенства следует, что AE=EC, а значит тр-к ABC равнобедренный по признаку: "Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным"
Объяснение:
Пусть BE - высота, проведенная к стороне AC, а точка D - равноудалена от концов AC, значит AD=DC. Рассмотрим тр-ки ADE и CDE. Они прямоугольные и у них один из катетов общий (DE), а гипотенузы равны AD=DC. Значит эти тр-ки равны: "если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого прямоугольного треугольника, то такие треугольники равны."
Из их равенства следует, что AE=EC, а значит тр-к ABC равнобедренный по признаку: "Если в треугольнике высота совпадает с медианой, то этот треугольник является равнобедренным"