Точки Т и Р лежат на стороне ВС, значит четырехугольник АТРД трапеция, углы при основании равны, значит равнобедренная. Радиус вписанной в него окружности равен корень из 3, следовательно высота трапеции равна 2 корня из 3. Обозначим высоту из точки Т ТК. В треугольнике АТК угол А 60 градусов. синус 60 градусов равен отношению ТК к АТ. АТ = 2 корня из 3 делим на синус 60 градусов. Получаем АТ=6, АК = 3, как катет , лежащий против угла в 30 градусов. Трапеция равнобедренная, то высота, проведенная из точки Р, отсекает такой же отрезок от точки Д. Далее, раз в трапецию можно вписать окружность, то сумма боковых сторон равна сумме оснований. Получаем 3+3+2ТР= 12 ТР=3, АД= 9
ABCD - параллелограмм. AB = 2 см, BC = 4 см, AC = 2√3 см
По теореме косинусов диагонали параллелограмма
AC² = AB² + BC² - 2 AB · BC · cos ∠B
BD² = AB² + AD² - 2 AB · AD · cos ∠A =
= AB² + AD² - 2 AB · AD · cos (180° - ∠B) =
= AB² + AD² + 2 AB · AD · cos ∠B
Так как AD = BC ⇒
BD² = AB² + BC² + 2 AB · BC · cos ∠B
Складываем почленно квадраты диагоналей.
AC² + BD² = AB² + AB² + BC² + BC²
BD² = 2 AB² + 2 BC² - AC² = 2·2² + 2·4² - (2√3)² =
= 8 + 32 - 12 = 28
BD = √28 = 2√7 см
ответ : BD = 2√7 см