обозначим А - (см) - катет 1, против известного угла Б - (см) - катет 2, соприкасается с известным углом С - (см) - гипотенуза
1) Определить значение тангенса угла ТАН (известный угол)
2) Определить длину неизвестного катета через тангенс ТАН (известный угол) = А / Б - если известен катет (А) лежащий против известного угла, то находишь катет Б Б = А / ТАН (известный угол) - если известен прилежащий катет (Б) к известному углу, то находишь катет А А = Б * ТАН (известный угол)
3) Определить по теореме Пифагора длину гипотенузы (С) - С^2 = А^2 + Б^2, откуда С = корень квадратный из ( А^2 + Б^2)
4) Определить ПЕРИМЕТР = А+Б+С (см)
5) Определить ПЛОЩАДЬ треугольника равную половине произведения его катетов. т. е. S = ( 1/2 х А х Б ) (кв. см)
Прямоугольным называется треугольник, у которого один из углов прямой. Это значит, что прямоугольный треугольник имеет две взаимно перпендикулярные стороны, называемые катетами; третья его сторона называется гипотенузой. По свойствам перпендикуляра и наклонных гипотенуза длиннее каждого из катетов (но меньше их суммы). Сумма двух острых углов прямоугольного треугольника равна прямому углу. Две высоты прямоугольного треугольника совпадают с его катетами. Поэтому одна из четырех замечательных точек попадает в вершины прямого угла треугольника. Другая особенность прямоугольного треугольника состоит в
SinВ=противолежащий катет на гипотенузу=AC/CB=6/10=0.6