Заметим, что если провести из любой вершины высоту, то она будет и биссектрисой и медианой одновременно. Также точка пересечения медиан будет совпадать с точкой пересечения биссектрис и высот (так как в правильном треугольнике медианы биссектрисы и высоты, проведенные из одной вершины совпадают). А медианы делятся в точке пересечения в соотношении 2 к 1, начиная от вершины. Теперь отрезок медианы от точки пресечения медиан до вершины будет радиусом описанной окружности. А отрезок медианы от точки пересечения медиан до основания (стороны, к которой проведен) будет радиусом вписанной окружности. Значит половина длины радиуса описанной окружности равна длине радиуса вписанной окружности. То есть 8:2=4 см.
По второму признаку равенства треугольников: "Если сторона и два прилежащих к ней угла в одном треугольнике равны стороне и двум прилежащим к ней углам во втором треугольнике - то такие треугольники равны". Нам дано, что BM - биссектриса (на рисунке) , значит угол ABM равен углу CBM по определению биссектрисы Она же есть высота. По определению высоты BM перпендикулярна AC, значит углы AMB и CMB равны между собой (каждый по 90 градусов) А также сторона BM - общая для треугольников ABM и CBM, значит эти два треугольника равны по 2-му признаку равенства треугольников. В равных треугольниках против равных углов лежат равные стороны (и наоборот) . Прямые углы AMB и CMB равны, значит и стороны, лежащие против них AB и CB. По определению, треугольник, у которого две стороны равны, называется равнобедренным. Утверждение доказано.
Подробное решение в прикреплённом фото