М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
bodrov2015
bodrov2015
01.04.2021 01:06 •  Геометрия

Обратная теорема: прямая,проведенная в плоскости через основание наклонной перпендикулярно к ней,перпендикулярна к ее проекции. напишите доказательство к этой теореме !

👇
Ответ:
Xkdidid
Xkdidid
01.04.2021

теорема. прямая, проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной.

 

 

рассмотрим следующий рисунок.

ah - перпендикулярен плоскости α. am это наклонная в плоскости α; a - прямая, проведенная в плоскости α через точку м перпендикулярно к проекции hm наклонной. теперь, докажем, что прямая а перпендикулярна ам. для этого рассмотрим плоскость amh.

по условию прямая а перпендикулярна нм. также прямая а перпендикулярна ан, так как ан перпендикулярна плоскости α. прямые нм и ан принадлежат плоскости анм и пересекаются. из этих трех пунктов следует, что прямая а перпендикулярна плоскости амн, значит, она перпендикулярна любой прямой, которая принадлежит плоскости амн.

так как прямая ам принадлежит плоскости амн, значит прямая a и прямая ам перпендикулярны между собой. что и требовалось доказать.

так как в теореме присутствуют три перпендикуляра, ан, нм и ам, теорема называется теоремой о трех перпендикулярах. все три прямых угла показаны на рисунке, который в начале доказательства. помимо основной теоремы о трех перпендикулярах, существует и обратная теорема о трех перпендикулярах.

обратная теорема  

прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции.

. отрезок ad перпендикулярен к плоскости равнобедренного треугольника авс. известно, что ав = ас = 5см, вс = 6 см, ad = 12 см. найти расстояние от точки а до прямой вс.

решение.

пусть точка е это середина вс. тогда вс будет перпендикулярным ае. то есть ае будет расстояние от точки а до прямой вс.

еа является проекцией de на плоскость авс. ае перпендикулярен вс, а следовательно по теореме о трех перпендикулярах de будет перпендикулярен bc. получаем, что de - это расстояние от точки d до отрезка bc. теперь будем определять ae.

ве = (1/2)*вс = 3 см.

так как треугольник аве прямоугольный, то можем по теореме пифагора найти ае.

ае^2 = ab^2-be^2 = 25-9 = 16, следовательно, ае = 4 см.

ответ. 4 см.

4,4(63 оценок)
Открыть все ответы
Ответ:
Xxxin
Xxxin
01.04.2021
Если соединить концы медиан, т.е. середины сторон, то мы получим треугольник, подобный данному с коэффициентом подобия 2, т.е размеры этого треугольника будут в 2 раза меньше, чем соответствующие размеры у исходного треугольника. Известно, что площади подобных треугольников относятся, как квадраты коэффициентов подобия, значит площадь нового треугольника будет в 4 раза меньше площади данного треугольника.
А соединяя середины медиан мы ещё в два раза уменьшаем  размеры треугольника, поэтому его площадь будет ещё в 4 раза меньше. Итого
мы должны площадь данного треугольника разделить на 16 и получим 1
ответ: 1
4,6(13 оценок)
Ответ:
Koley112
Koley112
01.04.2021
АВ=ВС, АВ - диаметр окружности. Окружность пересекает стороны АС и ВС в точках М и Н соответственно. ВН=7 см, МС=3 см.
Построим отрезки ВМ и АН, которые пересекаются в точке К.
 ∠ВМА=∠ВНА=90° так как они вписанные в окружность и опираются на дугу в 180°. 
В равнобедренном тр-ке АВС ВМ⊥АС, значит АМ=МС ⇒ АС=2МС=6 см.
Тр-ки АНС и ВМС подобны т.к. ∠С - общий и оба прямоугольные.
Пусть НС=х, ВС=ВН+НС=7+х.
ВС/МС=АС/НС,
(7+х)/3=6/х,
7х+х²=18,
х²+7х-18=0,
х>0, значит х≠-9, х=2.
НС=2 см,
АВ=ВС=7+2=9 см - это ответ.
4,8(31 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ