AMB = 51
Объяснение:
Так как треугольник MBC - равнобедренный(BM = BC), то углы при основании MC равны и угол BCM = BMC = 78.Треугольник AKM = BKM по третьему признаку равенства треугольников так как MK - общая, а
AK = BK и AM = MB по условию, тогда из равенства этих треугольников следует что угол AMK = BMK и угол AMB = 180 - BMC = 180 - 78 = 102.(угол BMC смежный с углом AMB, а по свойству смежных углов их сумма 180 откуда AMB + BMC = 180).Так как AMB = AMK + BMK (AMK = BMK по равенству треугольников AKM = BKM) . AMB = 2AMK = 2BMK и из этого равенства следует что угол AMB = AMB / 2 = 102 / 2 = 51.
AMB = 51
Объяснение:
Так как треугольник MBC - равнобедренный(BM = BC), то углы при основании MC равны и угол BCM = BMC = 78.Треугольник AKM = BKM по третьему признаку равенства треугольников так как MK - общая, а
AK = BK и AM = MB по условию, тогда из равенства этих треугольников следует что угол AMK = BMK и угол AMB = 180 - BMC = 180 - 78 = 102.(угол BMC смежный с углом AMB, а по свойству смежных углов их сумма 180 откуда AMB + BMC = 180).Так как AMB = AMK + BMK (AMK = BMK по равенству треугольников AKM = BKM) . AMB = 2AMK = 2BMK и из этого равенства следует что угол AMB = AMB / 2 = 102 / 2 = 51.
Построим высоты из вершины А, что бы найти площадь треугольника. Получим ВСТ с гипотинузой 9 см, и углом прилежащей к ней в 30 градусов, следовательно ТВ=4.5 см, т.к. катет лежащий на против угла в 30 градусов в 2 раза меньше гипотенузы. Находим площадь по формуле S=1/2*ah, S=1/2* 4.5*12=27 см2.
ответ: S=27 см2(в квадрате)
Чертёж ниже))