Ну, я надеюсь, дано ты запишешь сам. Вот решение, как сделаешь рисунок, все будет понятно: т.к. угол DAC=30 градусам, значит катет лежащий на против него равен половине гипотенузы (а она АС равна 12), а значит DC равен 6. Т. к. ABCD прямоугольник, значит и противоположная сторона АВ равна тоже 6. АС диагональ и она делится в точке пересечения по палам и следовательно АО = 6. В треугольнике АОВ все углы 60, т.к. угол DAO = 30 и следовательно угол ОАВ равен 90-30=60, и значит все углы тоже равны 60. И значит периметр треугольника равен 6+6=6= 18. Вот и все.
ВН - биссектриса равнобедренного треугольника, проведенная к основанию, значит ВН - высота.
ОР⊥ВС как радиус, проведенный в точку касания.
ΔOPQ равнобедренный (OP = OQ как радиусы), значит
∠OPQ = ∠OQP = α
∠POH = ∠OPQ + ∠OQP = 2α как внешний угол треугольника OPQ.
ΔСОН = ΔСОР по катету и гипотенузе (∠СНО = ∠СРО = 90°, ОН = ОР как радиусы, ОС - общая), значит
∠СОР = ∠СОН = 1/2 ∠РОН = α.
Итак, ∠OPQ = ∠COP = α, а эти углы - внутренние накрест лежащие при пересечении прямых QP и ОС секущей ОР, значит
QP ║ OC.