ответ: АН=35см; СН=5см
Объяснение: обозначим данные вершины А В С, а расстояние от точки до плоскости ВН. Так как расстоянием от точки к плоскости является перпендикуляр, то ВН перпендикулярно плоскости. У нас получился треугольник АВС с высотой ВН. ВН делит ∆АВС на 2 прямоугольных треугольника АВН и СВН, в которых наклонные АВ и ВС - гипотенуза, а ВН и АН и СН- катеты, причём АН и СН являются проэкция и на плоскость, найдём их по теореме Пифагора: АН²=АВ²-ВН²=37²-12²=
=1369-144=1225; АН=√1225=35см
СН ²=АВ²-ВН²=13²-12²=169-144=25;
СН=√25=5см
авсd - параллелограмм.
диагонали параллелограмма точкой пересечения делятся пополам.
пусть о - точка пересечения ас и вd.
тогда о - середина ас и середина вd.
найдем координаты середины диагонали ас:
х₀ = (3 + 1)/2 = 2;
у₀ = (- 4 + 2)/2 = - 1;
z₀ = (7 + (- 3))/2 = 2.
эти же координаты имеет середина диагонали вd.
найдем координаты d(х; у; z):
(- 5 + х)/2 = 2 (3 + у)/2 = - 1 (- 2 + z)/2 = 2
- 5 + х = 2 · 2 3 + у = - 1 · 2 - 2 + z = 2 · 2
- 5 + х = 4 3 + у = - 2 - 2 + z = 4
х = 4 + 5 у = - 2 - 3 z = 4 + 2
х = 9 у = - 5 z = 6
S = a²
S = 49см² ⇒ a = √49 ⇔ a = 7 см
P = 4a = 4*7 = 28(см)