х=3, у=3
Объяснение:
Итак, 13я задача при условии, что х у параллельны основаниям трапеции.
Рассмотрим △ACD и △OCN. У них угол при вершине С общий, а, например, <CON=<CAD как соответственные, значит △ACD ~ △OCN. =>
1) ON/AD=OC/AC.
Треугольники △AOD и △COB, образованные отрезками диагоналей и основаниями трапеции, подобны - свойство трапеции. =>
2) OC/AO=BC/AD
3) AO=AC-OC Подставим в 2):
OC/(AC-OC)=4/12=1/3
3*OC=AC-OC
4*OC=AC
OC/AC=1/4
Подставим это отношение в 1):
ON/12=1/4
ON=12*1/4=3
Значит у=3
Таким же образом из подобия △AOD ~ △COB выписываем OB/OD=BC/AD; а из подобия △ABD ~ △MBO выписываем OM/AD=OB/BD.
OD=BD-OB
Подставляем всё точно так же.
OB/(BD-OB)=4/12=1/3
OB/BD=1/4
OM/12=1/4
OM=x=3
Объяснение:
Знайдем кут АВО.Кут ОВС=90°(як кут радіуса і дотичної).
Кут ОВС=кут АВС+кут АВО.Тому кут АВО=Кут ОВС-кут АВС=90°-70°=20°
Кут АВО=куту ВАО,як кути при основі рівнобедренного трикутника ΔАОВ.Тому кут АОВ=180°-2*кут АВО=180°-2*20°=180°-40°=140°
№2
Проведем додатково радіус ОВ.ΔАОВ- рівнобедренний,з основою ВС.Кути при основі рівні ,тому кут ВОС=180°-кутОСВ*2= 180°-60°*2=60°.
Кут ВОС є зовнішним для рівнобедренного ΔАОВ,
тому кут А+кут АВО= куту ВОС.Але кут А=кут АВО(як кути при основі).
кут А= кут ВОС:2=60°:2=30° .
Отже ΔАВС-прямокутний,де ВС-катет ,який лежить проти кута 30°.Він дорівнює половині гіпотенузи.ВС=1/2АС=10:2=5 см
х^2-4х+4+36-х^2=0
-4х=-40
х=10
1катет=8(10-2)
2катет=6
S=(8*6)/2=24см^2
ответ 24см^2