1. Написать уравнение окружности в общем виде, изобразить на координатной плоскости.
2. Выполнив построение, выясните взаимное расположение окружности и прямой, заданных уравнениями:
у=(х+2)2+(у+1) 2=4 ,у= –х+1 .В ответе написать пересекаются, не пересекаются, касаются
3. Написать окружности прямой, с центром в точке О(1;1) и радиусом 2 см.
Объяснение:
1.Уравнение окружности (x – х₀)²+ (y – у₀)² = R² , где (х₀; у₀)-координаты центра.
2. (х+2)²+(у+1) ²=4 окружность с центром в точке (-2;-1) , радиусом 2
у= –х+1
(х+2)²+(-х+1+1) ²=4
(х+2)²+(2-х) ²=4
х²+4х+4+4-4х+х²=4
2х²=-8 или х²=-4 корней нет ⇒ не пересекаются.
3) (x – 1)²+ (y – 1)² =4
1.две прямые, перпендикулярные к третьей не перескаются
2.если точка с является внутренней точкой отрезка АВ, то отрезок АВ=АС+ВС
3. дополнительными называются два луча, имеющие общее начало и лежащие на одной прямой
признаки (как я поняла, это определения)
1. луч - часть прямой ограниченная с одной стороны точкой, называемой его началом
2.Две прямые называются перпендикулярными, если при их пересечении образуется прямой угол.
3.два отрезка называют перпендикулярными, если они лежат на перпендикулярных прямых