Втрапеции авсдс основаниями ад и вс диагонали ас и вс пересекаются в точке о. а)докажите что треугольники аод и сов подобны б) найдите длину отрезка ад если известно что вс=7 и ао: ac=5: 7 . желательно с рисунком
Отрезки касательных из точки вне окружности до точки касания с ней равны. Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ. Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой. Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис. ВК и СМ - биссектрисы равных углов В и С соответственно. Угол АВК равен половине угла АВС, и, следовательно, равен четверти дуги, заключенной между сторонами угла АВС, поэтому ВК пересекает дугу ВС в ее середине. Аналогично СМ пересекает дугу ВС в ее середине. Середина дуги ВС - точка пересечения биссектрис треугольника АВС и потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать.
Проекции точек D и С на плоскость а - это перпендикуляры DD1 и СС1, опущенные из точек D и С на плоскость а. Соединив точки А, В, С1 и D1 получим проекцию нашего ромба АВСD на плоскость а. Это будет параллелограмм АВС1D1 с противоположными сторонами АВ, С1D1 и ВС1, АD1 . В прямоугольном треугольнике АНD DH=AD*Sinф. Если Sinф=√5/4, то DН=9*√5/4. Угол между плоскостями - это линейный угол, образованный сечением этих плоскостей плоскостью, перпендикулярной к их линии пересечения. В нашем случае это угол DHD1, где DH и HD1 - перпендикуляры к АВ. В прямоугольном треугольнике DHD1 с прямым углом D1 катет HD1 равен HD1=HD*Cosβ. Cosβ=√(1-sin²β)=√(1-1/16)=√15/4. Тогда HD1=((9*√5)/4)*(√15/4)=45√3/16. Площадь параллелограмма равна S=a*h, где а - сторона параллелограмма, а h - высота, опущенная на эту сторону. В нашем случае а=9, h=45√3/16. S=9*45√3/16=405√3/16
Следовательно, треугольник АВС равнобедренный и ∠ АВС=∠АСВ.
Угол между касательной и хордой, проходящей через точку касания, равен половине дуги, стягиваемой хордой.
Центр вписанной в треугольник окружности лежит в точке пересечения его биссектрис.
ВК и СМ - биссектрисы равных углов В и С соответственно.
Угол АВК равен половине угла АВС, и, следовательно, равен четверти дуги, заключенной между сторонами угла АВС, поэтому ВК пересекает дугу ВС в ее середине.
Аналогично СМ пересекает дугу ВС в ее середине.
Середина дуги ВС - точка пересечения биссектрис треугольника АВС и потому является центром вписанной в ∆ АВС окружности, что и требовалось доказать.