Две прямые касаются окружности (радиусом 9 см) с центром О в точках Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.
Объяснение:
Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.
Найти ∠РМК.
Решение.
ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.
Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.
Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°
ответ.∠РМК=60°
У параллелограмма всего 4 высоты, которые попарно равны, поэтому нужно найти всего две разные высоты, опущенные на смежные стороны.
Пусть ABCD - параллелограмм, у которого AB = CD = 2 см, BC = AD = 5 см. Из точки B опустим высоту BM на сторону AD и высоту BN на сторону CD.
Найдём высоты:
S = AD · h1; 5 = 5 · h1; h1 = 5 / 5 = 1 (см) (другая высота, опущенная из точки D и параллельная этой, будет ей равна)
S = CD · h2; 5 = 2 · h2; h2 = 5 / 2 = 2,5 (см) (другая высота, опущенная из точки D и параллельная этой, будет ей равна)
Найдём острый угол BAD параллелограмма. Он будет равен острому углу BCD. Поэтому достаточно найти только один угол. Рассмотрим ΔBAM. Он прямоугольный. Теперь ищем угол BAM: sin BAM = BM / AB, где BM - это высота h1 = 1 см; sin BAM = 1/2; угол BAM = arcsin(1/2) = 30 (градусов) = угол BAD параллелограмма = угол BCD.