На сторонах ab,bc и ac равнобедренного треугольника с основанием ac отмечены точки m, k и p соответственно так, что угол apm равен углу kpc,pa=cp,ac=16 см, am=7 см,kb=6 см.найдите разность длин ab и ap.
Пусть основание прямоугольного параллелепипеда прямоугольник ABCD . AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см. обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh. По теореме Пифагора для треугольников ABB₁ и ADD₁: { AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁². { x²+h² =13² ; (7x)² +h²=37². Вычитаем из второго уравнения системы первое (7x)² -x² =37² -13²; 48x² =(37-13)(37+13) ; 2*24x² =24*2*25⇒x =5 ; h =√(13² -5²) =12. S бок =16xh =16*5*12 =16*60 =960 (см²).
Искомое расстояние равно разности расстояния от вершины прямого угла до центра окружности и радиуса вписанной в этот треугольник окружности. Формула радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2 где а и b катеты, а с - гипотенуза. Чтобы найти радиус, нужно знать гипотенузу. Она равна 17 см ( отношение сторон данного треугольника из Пифагоровых троек 8:15:17. Можно проверить по т.Пифагора) r=(8+15-17):2=3 см Радиус вписанной окружности перпендикулярен сторонам в точках касания. ОН=ОК=3, четырехугольник ОМСК - квадрат. Расстояние СО от прямого угла до центра равно диагонали d этого квадрата. d=3√2 см Нет нужды доказывать, что расстояние измеряется перпендикуляром, СМ ⊥ отрезку касательной в точке М, и М является ближайшей к вершине С точкой вписанной окружности. CМ=СО-ОМ=3√2-3=3(√2-1) см
AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см.
обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh.
По теореме Пифагора для треугольников ABB₁ и ADD₁:
{ AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁².
{ x²+h² =13² ; (7x)² +h²=37².
Вычитаем из второго уравнения системы первое
(7x)² -x² =37² -13²;
48x² =(37-13)(37+13) ;
2*24x² =24*2*25⇒x =5 ;
h =√(13² -5²) =12.
S бок =16xh =16*5*12 =16*60 =960 (см²).
ответ: 960 см².