М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dasha34presnova
dasha34presnova
09.01.2021 13:46 •  Геометрия

основание трапеции равно 4, высота равна 11, а площадь трапеции равна 55. найдите вторую сторону основания.

👇
Открыть все ответы
Ответ:
Виктор338
Виктор338
09.01.2021

ответ:Ре­ше­ние.

а) Обо­зна­чим бук­вой E точку пе­ре­се­че­ния от­рез­ков MK и AB. Углы ∠ALB и ∠LAD равны, как на­крест ле­жа­щие углы; ана­ло­гич­но ∠CLD = ∠ADL, как на­крест ле­жа­щие. От­сю­да по­лу­ча­ем, что ∠BAL = ∠BLA, ∠CDL = ∠CLD, то есть тре­уголь­ни­ки ABL и CLD рав­но­бед­рен­ные (AB = BL, CL = CD). Тогда бис­сек­три­сы этих тре­уголь­ни­ков BM и CK яв­ля­ют­ся также вы­со­та­ми и ме­ди­а­на­ми. Зна­чит, точки M и K яв­ля­ют­ся се­ре­ди­на­ми сто­рон AL и DL со­от­вет­ствен­но. От­сю­да сле­ду­ет, что от­ре­зок MK яв­ля­ет­ся сред­ней ли­ни­ей тре­уголь­ни­ка ALD. Зна­чит, MK || AD.

Те­перь если рас­смот­реть тре­уголь­ник ABL, по­лу­ча­ем, что от­ре­зок EM па­рал­ле­лен сто­ро­не BL и ис­хо­дит из се­ре­ди­ны сто­ро­ны AL. От­сю­да сле­ду­ет, что EM яв­ля­ет­ся сред­ней ли­ни­ей этого тре­уголь­ни­ка, а зна­чит точка E — се­ре­ди­на сто­ро­ны AB. Что и тре­бо­ва­лось до­ка­зать.

б) Рас­смот­рим 4-уголь­ник MLKN. Из преды­ду­ще­го пунк­та по­лу­чи­ли, что ∠M = 90°, ∠K = 90°, от­ку­да сле­ду­ет, что

То есть у дан­но­го 4-уголь­ни­ка суммы про­ти­во­по­лож­ных углов дают , от­ку­да сле­ду­ет, что во­круг него можно опи­сать окруж­ность. Со­еди­ним точки N и L (пе­ре­се­че­ние с MK в точке F) — по­лу­чим 2 пря­мо­уголь­ных тре­уголь­ни­ка NML и NKL. Тогда центр опи­сан­ной окруж­но­сти лежит на се­ре­ди­не общей ги­по­те­ну­зы NL.

Те­перь за­ме­тим, что тре­уголь­ни­ки MFL и NFK по­доб­ны по 2 углам (∠MFL = ∠NFK, как вер­ти­каль­ные; ∠MLF = ∠NKF, как впи­сан­ные углы, опи­ра­ю­щи­е­ся на одну и ту же дугу MN). Тогда

Ана­ло­гич­но тре­уголь­ни­ки NMF и KFL по­доб­ны по 2 углам (∠NFM = ∠KFL, как вер­ти­каль­ные; ∠MNF = ∠FKL, как впи­сан­ные углы, опи­ра­ю­щи­е­ся на одну и ту же дугу ML). Тогда

По­де­лим со­от­но­ше­ния друг на друга:

Из по­до­бия тре­уголь­ни­ков NLC и NFK (по 3-м углам) по­лу­чим, что Ана­ло­гич­но из по­до­бия тре­уголь­ни­ков NLB и NFM по­лу­чим, что , от­ку­да сле­ду­ет:

Окон­ча­тель­но по­лу­ча­ем, что

ответ: 5 : 14.

Объяснение:

4,7(73 оценок)
Ответ:
11Аракся11
11Аракся11
09.01.2021
Дана точка А(-1,5;2).
а). Точка, симметричная данной относительно оси 0Х, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Х, на расстоянии, равном расстоянию от  данной точки до оси 0Х. То есть это точка В(-1,5;-2).
б).  Точка, симметричная данной относительно оси 0Y, лежит на прямой, проходящей через эту точку перпендикулярно оси 0Y,  перпендикулярно оси 0Y, на расстоянии, равном расстоянию от  данной точки до оси 0Y. То есть это точка С(1,5;2).
в).  Точка, симметричная данной относительно начала координат, лежит на прямой, проходящей через данную точку и начало координат, на расстоянии, равном расстоянию от  данной точки до начала координат.
То есть это точка D(1,5;-2).

Найдите координаты точки, симметричной точке (-1,5; 2) а) относительно оси ох б) относительно оу в)
4,6(3 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ